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ABSTRACT

Concrete is the most abundant artificial material on Earth, yet the physical mechanisms

that control its properties are not fully understood. Cement, the main binding agent, reacts

with water to produce Calcium-Silicate-Hydrate (C-S-H) nanoparticles that form a hetero-

geneous and porous gel which serves as the glue for the hardened material. The C-S-H

building blocks are highly charged and adhere due to electrostatics mediated by the water

and counter-ions produced by cement dissolution. This multiscale complexity, coupled to

the non-equilibrium setting process, is the central challenge to designing better cementi-

tious materials—for more durable infrastructure, reduced emissions and improved sustain-

ability, and 3D printing based construction. To address this, I have developed nano- and

meso-scale computational models, connecting cement chemistry to its nanoscale cohesion

and the consequential effects on microstructure and macroscopic material properties.

The electrostatics governing cohesion of C-S-H nanoparticles is in the regime (strongly

coupled i.e multivalent ions and high surface charge density) where the usual mean-field

theories break down and a new approach is needed. By modeling explicit ions, immersed in

SPC/E water, confined by charged surfaces, I demonstrate that strong spatial and dynamic

correlations arise between ions and water which are responsible for the strong net attraction

between the confining surfaces. This depends on surface charge and ion type, controlled by

the cement chemistry, which changes over time. Coarse-graining to the mesoscale, I trans-

late the nanoscale forces to an effective interaction between C-S-H particles. By coupling
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molecular dynamics with a Grand Canonical Monte Carlo process to mimic C-S-H precip-

itation, I investigate the heterogeneous C-S-H growth near cement grain surfaces. These

simulations demonstrate how the time-evolution of the interactions can drive the formation

of a percolating gel, which limits spatial gradients and anisotropy at early hydration times

but reaches high densities with large local variations—as in hardened cement pastes—at

later times. Together, these models provide a framework for predicting the nanoscale elec-

trostatics, mesoscale morphology, and macroscopic properties of cement from first princi-

ples, and I discuss how this could be applied to make predictions of rheological proper-

ties.

INDEX WORDS: multiscale modeling, electrostatics, coarse-grained model, soft
matter physics, molecular dynamics, Grand Canonical Monte Carlo,
percolation, dynamic correlations, virial stresses, local ordering,
scattering, rheology, porous materials
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INTRODUCTION

Nowadays cement and concrete are ubiquitous materials that make up large portions of our

infrastructure and buildings. Nearly everyone is familiar with these materials and encoun-

ters them on a daily basis—perhaps even using them in personal projects. Yet most people

would be surprised to learn that the fundamental mechanisms underlying cement setting

continue to elude us. This is due to the incredible complexity of the material across many

length scales, and it is this complexity that I have delved into over the past years. This

dissertation is the culmination of that work.

A cement-water mixture starts as a relatively fluid paste that can easily be poured into

molds, but it then sets into a strong solid capable of holding up skyscrapers. It is easy to use

and cheaply manufactured, a combination that creates high demand. However, this all has

an environmental cost as 8% of anthropegenic CO2 emissions are associated with cement

production. Also, despite the strength of concrete, it is not as durable as we would like—

leading to deterioration in infrastructure and growing maintenance costs. Most current

attempts to design improved cementitious materials are based on trial and error methods,

as there is no framework to predict how modifications to cement composition will affect

the final properties. The underlying problem is an incomplete understanding of the material

because its behavior arises from an interplay of electrostatics, the non-equilibrium solidifi-

cation, and multiscale heterogeneity.

Cement, the binding agent of concrete, reacts with water to produce a Calcium-Silicate-

Hydrate (C-S-H) gel that is heterogeneous and porous at the nm to µm scale. The gel

becomes stronger as it gets denser during hydration, and it glues together sand, gravel, and
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rocks to form the hardened concrete. The C-S-H gel is the ingredient that binds everything

together, and the microstructure of that gel ultimately controls the macroscopic mechan-

ical properties. However, the gel itself is made up of C-S-H nanoparticles. These charged

building blocks aggregate in the cement solution, interacting via electrostatic forces medi-

ated by the water and counter-ions in solution. These strongly coupled electrostatics at the

nanoscale are not fully understood, and the mechanisms by which cohesion emerge during

setting need to be investigated.

In this thesis, I have worked to develop new scientific understanding of this complex

and technologically relevant material. Starting at the nanoscale, I have developed a model

of explicit ions, interacting with water and confined by charged surfaces. I have used this

model to unravel how the strong spatial and dynamic correlations that arise between ions

and water, due to the capability of water to restructure around ions, determine the nanoscale

forces at play in the emergence of material cohesion. The framework developed here can

even be applied to predict the effects of changing cement chemistry on cohesion, or to

investigate systems such as clays or DNA which also rely on strongly coupled electrostatics

at the nanoscale level.

I have also developed a coarse-grained mesoscale model which is able to elucidate the

effect of heterogeneous growth of C-S-H at cement grain surfaces and the time-evolution

of the effective interactions. The presence of the surfaces drives the formation of spatial

gradients and anisotropies in the material, and these effects are limited or enhanced by

the evolving forces between C-S-H nanoparticles. In these investigations, I have developed

new analysis tools and explored a number of computational techniques from atomistic to

coarse-grained and non-equilibrium molecular dynamics to various forms of Monte Carlo.

Thanks to these developments, we can now extract rheological data from simulations

and integrate nano- and meso-scale models with experimental measurements. Rheological

tests can be run on the simulated microstructures created from mesoscale models, which in
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turn can incorporate different interaction potentials computed from different cement mix-

tures. Together, this could form a truly multiscale framework to quantitatively predict the

material properties of different cement mixtures and how they develop over time from first

principles.

This dissertation is organized as follows. In Chapter 1, I introduce cement, its current

state of study, and the open scientific questions. In Chapter 2, I describe the growth and

microstructure of the C-S-H gel that forms during cement hydration, and clarify the role of

spatial heterogeneities and the interactions between C-S-H particles. In Chapter 3, I delve

into the electrostatics which control the C-S-H interactions. By discussing what existing

theories and models miss, I motivate and explain the development of a semi-atomistic

model. In Chapter 4, I describe how I use this model to investigate the origin of cohesion in

cement. Analyzing spatial and dynamical correlations, I unravel the nanoscale mechanism

responsible for the emergence of net attractive forces over time during cement hydration.

Finally, in Chapter 5, I discuss ongoing work to investigate the rheological properties of

my simulated microstructures in connection with experimental measurements. I conclude

by discussing the connection between the nanoscale cohesion, mesoscale morphology, and

macroscopic rheology.
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CHAPTER 1

CEMENT AND PHYSICS

Cement reacts with water to produce a gel network that rapidly grows denser and harder,

creating a solid with an elastic modulus on the order of 10 GPa—the exact value depends

on the specific recipe and conditions during setting. The microstructure of the final hard-

ened material is highly dependent on the way it is formed, starting from the much softer gel

at the early stages of hydration. This non-equilibrium process, of cement hydrates growing

from the reaction interface between cement grains and water to form a percolating solid

network, is a fascinating soft matter physics problem. At a smaller scale, that gel network

is made of nano-sized building blocks whose surfaces are highly charged and immersed

in a solution of water and ions from the dissolving grains. The net interaction forces

between these nanoparticles are governed by electrostatics and statistical physics. Despite

cement being a commonplace material, its properties are determined by uncommon and

challenging physics problems at multiple length scales. I will delve into my work on the

mesoscale (Ch. 2) and nanoscale (Ch. 3 and 4) problems in the coming chapters, but first

I will introduce cement as a material and explain the advances and open questions in its

study.

1.1 WHAT IS CEMENT?

The term cement is often colloquially used interchangeably with concrete: which is a rock-

like construction material used for all manner of buildings, bridges, etc. However, concrete
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is an amalgamation of cement, water with which it reacts, and aggregates such as sand,

gravel, or rocks. The reaction between water and cement is responsible for the setting

(during which the solidification is not caused by drying), and the produced hydrates are

responsible for gluing together the various components that went into the mixture. This

process, while complex and still not completely understood at the physical-chemistry level,

is very effective in delivering an incredibly strong and cheap material, which is the founda-

tion of our built infrastructure and the most used synthetic material on Earth.

Hydraulic binders of this type have a very long history. In fact, a type of cement is

known to have been used by the ancient Romans, over 2000 years ago, in structures such

as aqueducts and the Pantheon—which still stand today. The recipe was based on volcanic

rocks in the south of Italy, and its use did not become widespread. The modern formulation,

called Portland cement after the similarity of the hardened product to Portland stone from

the Isle of Portland, was pioneered in the mid 1800’s, and its use quickly spread around the

world. Today, the most common version is still Ordinary Portland Cement (OPC), though

often mixed with various additives.

OPC is made mostly of Calcium-Silicates. The exact formulation may vary between

sources, but tri- and di-Calcium Silicate (C3S and C2S in cement literature) make up over

80% of cement by mass [138]. Calcium-Silicates are made from natural, cheap, and glob-

ally abundant ingredients such as limestone (CaCO3) and clay (a source of Silicate). These

are ground into powder and heated in kilns at high temperatures. This process releases

the Carbon as CO2 and sinters the Calcium and Silicon to form the Calcium-Silicates in

rock-like objects called the clinker [138]. The clinker is ground up and mixed with small

quantities of additives to produce OPC. The cheap ingredients, combined with the early

workability of the concrete mixture (which is a relatively fluid paste before setting) and the

high strength reached upon setting make it an ideal construction material.
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The development of cement has facilitated rapid construction of new structures which

became necessary with increasing urbanization since the industrial revolution. Currently,

cement production is only expected to increase as demand for new buildings continues to

grow—mainly in developing countries, with China and India leading the pack [62]. This all

comes with an environmental cost, as about 8% of global CO2 emissions arise from cement

production [7]. Most of this is associated with the decarbonation of limestone when creating

the clinker.

The greenhouse gas emissions could be reduced by improving cement strength so less

is needed or by using alternative compounds, which do not produce as much CO2, to make

the cement. Having a better control of cements properties during setting is hard and mainly

achieved through additives which can modify the properties and durability of the final

material. However, it is crucial for a wide array of construction applications: from control-

ling setting time for 3D printing concrete to modifying the final mechanical properties for

stronger, longer-lasting structures. New technologies, advanced material design, and more

sustainable processes are all hindered by the incomplete understanding of the fundamental

mechanisms that govern the setting of cement: from the nanoscale electrostatic cohesion,

to the mesoscale gel network formed out of equilibrium, to the microscopic underpinnings

of the macroscopic material properties.

1.2 CALCIUM-SILICATE-HYDRATES

The chemistry of cement hydration is complex, with multiple processes (dissolution, diffu-

sion, adsorption, nucleation, precipitation) happening simultaneously [22, 110, 138]. The

kinetics of these different processes and the formation of multiple hydration products make

it difficult to isolate and characterize any individual part of the hydration. To limit this com-

plexity, most studies focus on the hydration of alite (an impure tricalcium silicate, Ca3SiO5,
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or C3S in cement chemistry notation) which is the main constituent of the cement powder

and is responsible for the formation of the Calcium-Silicate-Hydrate (C-S-H) gel. C-S-H,

in turn, is the main product of cement hydration, and the gel it forms has been recognized

as the principal contributor to the macroscopic strength of the material [109]. The various

components of cement are thoroughly discussed in the literature [22, 138], but in this thesis

I mainly focus on C-S-H.

As the progressive dissolution of cement raises the concentrations of Calcium and Sil-

icon in solution, the saturation of these species leads to the precipitation of C-S-H. The

precipitated C-S-H is amorphous and its exact form debated: the two main ideas are that

it is formed of large but defective sheets/ribbons of silicate layers [47] or that it is an

assembly of lamellar nanoparticles [4, 27, 97, 106]. Both concepts draw comparison to the

minerals Tobermorite and Jennite, which are crystalline calcium silicate hydrate minerals

with different Ca/Si ratios. Neutron scattering experiments [4, 27] provide evidence of a

characteristic size of 5nm corresponding to the thickness of platelet-like objects (Fig. 1.1,

left).

The measured mean Ca/Si ratio of C-S-H produced by the hydration of OPC is approxi-

mately 1.7 [4], though the distribution in the values is wide [115]. This Ca/Si ratio is notably

higher than the values for Tobermorite (0.83) and Jennite (1.5), which could explain why

the C-S-H does not form a large-scale crystal. As a consequence, a major advance in terms

of molecular models for C-S-H was achieved by starting from these crystalline phases and

introducing defects which increase the Ca/Si ratio. This approach, pioneered by Pellenq et

al [106], has provided the first realistic molecular model of C-S-H in the hardened paste

(Fig. 1.1, right) that produces, as a result not input, features such as the density of C-S-H

particles as measured by scattering experiments [4]. In this model, Calcium-Silicate chains

form layers with water and Calcium ions confined between them, with a high surface charge

due to the ionized Silanol groups in the Silicate chains [106]. At earlier times, the C-S-H
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Figure 1.1: Scattering data on cement paste and molecular model of C-S-H. Left: Small
angle neutron scattering of cement paste shows a bump at high q corresponding to the
typical size of C-S-H nanoparticles [27]. Right: A molecular model for C-S-H where the
blue-white particles are water, the gray and green spheres are intra- and inter-layer Calcium
ions, and the yellow and red sticks are Silicon and Oxygen atoms in Silica tetrahedra [106].

structure may be different as the solution chemistry changes during the course of hydration,

and the surface charge is known to change with pH [77].

The nanoparticles aggregate into a gel network, and the larger-scale microstructure of

the C-S-H gel is coupled to the non-equilibrium reaction kinetics that govern C-S-H pre-

cipitation. As the hydration is an exothermic process, measuring the total heat flowing in or

out of the system gives us insight into how the reaction proceeds. Calorimetry curves show

that, after an initial burst, the system appears dormant for a period of time (Fig. 1.2, left).

This is followed by an acceleration in the reaction rate up to a peak typically reached at

approximately 9 hours. After this peak, the reaction slows down but continues indefinitely

[22].
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Figure 1.2: Calorimitery and rheology of hydrating cement paste. Left: Calorimetry
curves measuring the heat released by the exothermic hydration of cement [22]. The heat
flow serves as an indicator of the rate at which the reaction is progressing, and this turns out
to be non-monotonic. After an initial reaction, the system is nearly dormant for a period,
before the main setting occurs during an acceleration and deceleration period. Right: Shear
modulus of cement with (solid) and without (dashed) plasticizers [80]. The non-uniform
reaction leads to a non-linear development of mechanical strength, and the macroscopic
properties are strongly sensitive to changes in the chemistry.

The macroscopic properties that emerge from this process develop non-linearly during

the setting (Fig. 1.2, right). Rheology of the cement shows an early solid response that stays

constant for a period before jumping up to the final value. The measured modulus is also

highly dependent on the chemistry as the addition of plasticizers was seen to suppress the

early plateau entirely [80]. When it sets, the hardened paste is very dense, but still porous

and heterogeneous at small scales. Measurements with NMR, neutron/x-ray scattering, and

gas sorption have demonstrated the complex pore structure of the cement paste [145], which

affects the mechanical strength and durability of the material. The final texture is clearly

still out of equilibrium and continues to age/creep [148].

While it is clear that the micro- and macro-scale properties arise from the non-

equilibrium aggregation and gelation of the C-S-H building blocks, the connection between
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the molecular level description of C-S-H and its microstructure is not fully understood.

Mesoscale simulations [63, 64, 65] based on coarse-grained colloid-like C-S-H parti-

cles, modeled via molecular dynamics with an effective interaction potential and a Grand

Canonical Monte Carlo process to mimic precipitation, have made significant strides here.

As I will discuss further in Sec. 1.4, these models incorporate the nanoscale forces between

C-S-H particles through an effective interaction potential.

C-S-H particles are highly charged and in solution with ions, hence electrostatic forces

govern their net interactions. This is demonstrated in experiments by Plassard et al [107],

who measured the force between an AFM tip coated with C-S-H and a C-S-H substrate in a

Calcium-Hydroxide solution (Fig. 1.3). The measured forces extended several nanometers

beyond contact and were strongly affected by the concentration and pH of the solution.

At low concentrations, when the surface charge density of the C-S-H and the number of

Calcium counter-ions are both low, the net force was repulsive. However, upon increasing

concentration, an attraction between the C-S-H surfaces was observed. This trend runs

counter to the expectations of classical mean field theories for surfaces forces in solution,

like the theory by Derjaguin, Landau, Verwey, and Overbeek (DLVO) [66], which predicts

that an increased surface charge would lead to increased repulsion. Due to the presence of

multivalent counter-ions in strong confinement between highly charged surfaces, in fact,

the electrostatics in cement solutions is not accurately described by DLVO, and a more

in-depth study is required.

1.3 ELECTROSTATICS IN SOLUTION

Interactions between charged surfaces in an electrolyte solution are at play in many bio-

logically and technologically important materials. Mean-field analytic theories, such as

DLVO, can quite accurately describe the cases of “weak coupling” (low surface charges,
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Figure 1.3: AFM measurements of forces between C-S-H particles in solutions
with differing chemistry. The increasing concentration is one change that occurs with
increasing cement hydration time [107]. These measurements demonstrate a complex evo-
lution of the interactions over time during setting.

monovalent ions, large separations). Outside of this regime, the discrete ion size, interac-

tions between ions, the solvent properties, and even the molecular nature of the surface can

dramatically alter the overall surface-surface interaction. C-S-H falls into this second cat-

egory. The physics underlying the strong coupling regime have been studied extensively,

and in this section I will describe the progression of previous studies and the currently open

questions.

1.3.1 MEAN FIELD THEORIES

Over 100 years ago, Gouy and Chapman independently proposed a theory that brings

together the exact Poisson equation for electrostatics with the assumption that ion concen-

tration in a solution depends on the Boltzmann factor related to the electrostatic potential
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[66]. This gives a second order differential equation that can be solved to calculate the

electrostatic potential ϕ .

∇
2ϕ =−ρ

ε
(1.1)

ρ = ρ0 exp[−qϕ/kBT ] (1.2)

Here ρ is the charge density, ε the dielectric permittivity (vacuum times relative), q the

charge of ions, and T the temperature. The theory treats the ions in solution as an ideal

gas. The ion size is not considered, and there are no direct interactions between ions—

they only interact with the mean field defined by ϕ . This approximation works well if

the ion concentration is dilute and ion valency low, such that ion-ion correlations are not

significant. This gives rise to the electric double-layer [66], which consists of a Stern layer,

set by ion size, and a diffuse layer where the ion concentration is lower (Fig. 1.4, left).

An analytic solution of the Poisson-Boltzmann equation requires an approximation to

be made. Debye and Hückel truncated the Taylor series for the exponential to first order so

exp[−qϕ/kBT ]≈ 1−qϕ/kBT [66], valid for qϕ << kBT . Given a net neutral system, this

approximation reduces the PB equation to:

∇
2ϕ =−κ2ϕ (1.3)

where the Debye length is κ−1 =
√

εkBT/2ρq, which gives the electrostatic screening

distance. In this framework, the electrostatic interactions between two like-charged surfaces

are purely repulsive. Due to the presence of screening ions, this force falls exponentially

with distance.

Derjaguin, Landau, Verwey, and Overbeek extended this treatment to include attractive

Van der Waals forces [37, 149]. In DLVO theory, dispersion interactions between atoms

in a surface (with the form r−6) are integrated to give a net attraction between surfaces of
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Figure 1.4: Electrostatic double layer and DLVO theory. Left: Schematic representation
of the Poisson-Boltzmann based double-layer that forms near charged surfaces in elec-
trolyte solutions. The accumulation of counter-ions near the surface screen the electrostatic
potential over a distance given by the Debye length κ−1. Right: Example potential energy
between two like-charged particles via DLVO. Included as a demonstration of the typical
DLVO behavior. Axes are dimensionless. The competition between an electrostatic repul-
sion and a Van der Waals attraction can give a repulsive barrier and non-contact attraction.

FV dW ∝−z−2, where z is the distance between the surfaces and the proportionality constant

depends on the atomic polarizabilities and densities in the two surfaces. Combining the

dispersion term with the electrostatics gives competing attractive and repulsive forces (Fig.

1.4, right).

The weak coupling mean field approach has been very successful. It has significantly

advanced our understanding of electrostatics in a wide range of materials, especially rele-

vant to soft matter and biophysics. However, the approximations made are expected to hold

in systems with low surface charges, ion concentrations/valency, and confinement. Beyond

this limit, ion-ion correlations may become significant and the ideal gas picture may break
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down. However, a different mean field approximation can also be applied at the other end

of the spectrum, for strong coupling.

In the strong coupling regime, ions can self-assemble into a lattice. This idea is traced

back to Wigner, who predicted the crystallization of electrons under certain conditions in

1934 [151]. While an electron cloud is by no means the same as an ion solution, parallels

can be drawn. In the case of electrons, quantum fluctuations can be suppressed if their

density is low and the potential energy gain for localizing into a lattice is less than the

entropic cost. In the case of ions, a similar effect can happen in the strong coupling regime

because of the high electrostatic potential energy relative to thermal fluctuations, and it

has been used to explain the attraction between DNA molecules [116]. More generally,

the ground state crystal configurations of confined ions can be calculated [119], and the

interactions of ions with a mean field produced by this ion crystal can be used to obtain

an expression for the pressure induced between the surfaces within which these ions are

confined [120].

The mean field theories help to frame the problem of electrostatics in solution. In either

the weak or strong coupling limit, reasonable analytic predictions can be made, but how

does one go from one limit to the other? For cement, experiments (Fig. 1.3) have shown

that the forces can change from repulsive to attractive with the solution chemistry—perhaps

passing from weak to strong coupling limits. It is not clear which specific conditions are

adequately described by which limit, and the “intermediate” scenario does not seem to be

captured by the mean field approach at.

1.3.2 PRIMITIVE MODEL

A major advance from mean field approaches was made with the primitive model (PM)

[72]. The PM is, in principle, very similar to the mean field theories. One considers infinite,

planar, uniformly surfaces which confine ions in a dielectric continuum. The key distinction
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is that now each ion is treated individually, with finite size, not as part of a continuous

density function. Consider the Hamiltonian for such a system:

H =−σ2AD
2ε

+∑
i

[
U surface

short−range(zi)+
1
2

mv2
i

]
+∑

i, j

[
qiq j

4πεri j
+U ion

short−range(ri j)

]
(1.4)

In the above equation, D represents the distance between the charged surfaces, σ the

surface charge density, and A the surface area. The various terms correspond to surface-

surface energy, ion-surface energies, and ion-ion energies. The short-range interactions are

unspecified but could range from hard-spheres to a Lennard-Jones potential. This can be,

in principle, the same underlying Hamiltonian as for the mean field theories, but in those

approaches approximations was made so that the ion degrees of freedom could be inte-

grated out analytically. With the primitive model, instead, one can use numerical simula-

tions so that each ion degree of freedom can be tracked, equilibrium states sampled, and

the net pressure calculated as the average of a microscopically fluctuating quantity.

The advantage of adding all this complexity is that one should obtain, in principle, the

full spectrum of behaviors (low to high coupling). If temperature based entropic effects

dominate, the weak-coupling mean field behavior should be recovered, with fluctuating

ions behaving like an ideal gas. If the electrostatics based energetic effects dominate, one

expects the ion crystallization of the strong-coupling limit. Most importantly, this approach

should provide information on what happens in between, when both energetic and entropic

effects are important.

Early work with the PM used Monte Carlo simulations and a hard-sphere short-range

potential. Pellenq et al studied the effect of surface charge density σ , surface separation D,

and ion type on the pressure between two parallel surfaces confining counter-ions [101].

They found that, for a large range of σ and many ion types, it was possible to develop one or

more attractive wells in the electrostatic pressure between the surfaces. While like-charge

15



Figure 1.5: The primitive model. Left: A schematic of the PM system. Infinite, uniformly-
charged walls confine ions to a slab, finite in the z direction. The ions are treated individu-
ally, introducing many degrees of freedom, but accounting for their finite size and ion-ion
correlations. Right: A plot of the pressure (contours, in atmospheres) as a function of sur-
face charge and surface separation [102]. This is for Calcium (divalent) counterions. Also
labeled are regions that correspond to the physical systems of swelling clays and C-S-H.
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attraction had been predicted by strong-coupling theories and observed experimentally, this

work demonstrated systematically the large variety of phase behaviors that could arise in

real materials. Specifically focusing on Calcium ions, which are abundant in cement, they

found multiple areas of attractive pressure in the surface charge density/surface separation

plane (Fig. 1.5), including for the surface charge corresponding to C-S-H in the hardened

cement paste (σ u 3e/nm2).

Later work by Jonsson et al focused more specifically on the interactions between C-S-

H particles [73, 74], in particular in connection with the AFM measurements of the surface

forces in C-S-H by Plassard et al [107]. This study included salts–i.e. both co-ions and

counter-ions. In the counter-ion only case, the number of ions is exactly set by the elec-

troneutrality condition. With salts, there is an additional parameter as the ion numbers are

not entirely specified by the surface charge density. Jonsson et al used a grand canonical

ensemble to determine ion concentrations, which requires as an input the total chemical

potential µ of the salts—determined via the Widom insertion technique [150]. They went

on to compute an estimate of the force between a C-S-H coated AFM tip and a C-S-H

substrate, which showed good qualitative agreement with experimental results (Fig. 1.6).

1.3.3 A MISSING LINK

While the PM provides a way to numerically probe all kinds of situations beyond mean

field, and related studies demonstrated the possibility of attraction at finite coupling, in

the case of C-S-H the cohesive strength predicted by PM simulations is on the order of

≈ 60MPa for the hardened paste [102]. This value is too small compared to the elastic

modulus of hardened C-S-H, which is measured to be greater than 10GPa in nanoindenta-

tion experiments [93, 148]. Macroscopically, 60MPa is more consistent with the modulus

of rubber than of concrete—what is missing?
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Figure 1.6: AFM measurements and primitive model simulations. Left: AFM measure-
ments of force as a function of pH (which controls surface charge) [107]. Increasing surface
charge increases attraction, which is at odds with the behavior predicted by DLVO. Right:
Estimates of these forces using the primitive model [73]. Increasing correlations between
ions can be a mechanism for electrostatic attraction.

Figure 1.7: Atomistic simulations of C-S-H interactions. The force between two crys-
talline C-S-H layers, computed from atomistic simulations [89]. The minimum pressure of
≈ 6GPa is almost two orders of magnitude stronger than what is predicted by PM simula-
tions [102].
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More detailed atomistic simulations show a drastically stronger cohesion between two

layers of Tobermorite, considered as a first approximation for hardened C-S-H (Fig. 1.7).

Treating the surfaces and solvent (water) in full atomic details, the mean pressure between

the surfaces at small separations is found to approach ≈ 6GPa, which is about 100 times

stronger than what was predicted with the PM. In Ch. 3 I will discuss the source of this

discrepancy and develop a new, semi-atomistic model that captures the most important

ingredients. Using this model, in Ch. 4 I will describe the microscopic mechanisms behind

cohesion of C-S-H and how it develops during hydration.

1.3.4 EFFECTIVE INTERACTIONS THAT EVOLVE WITH TIME

AFM experiments [107] indicate that the higher ion concentrations in the late stages of

hydration produce effective interactions with an increasingly deeper attractive well. On the

other hand, the interactions at early stages seem to have an additional repulsion at inter-

mediate separations. Interaction potentials with competing attraction and repulsion have

been studied in a variety of contexts [28, 156] and been shown to have complex phase dia-

grams containing a variety of microphases (Fig. 1.8). I myself have also studied the phase

behavior of a similar potential in a rather exotic scenario: as a tool to describe the corre-

lations of points in force space for shear thickening suspensions (see Appendix). During

cement hydration, the precipitation of C-S-H and the evolution of their interactions may

create a specific pathway through these phase diagrams.

In the context of gels, the final interactions and densities are rarely sufficient to describe

the morphology—the history of the material plays a significant role [15]. Thus to model the

mesoscale morphology of C-S-H, the explicit time evolution of the nanoscale interactions

needs to be considered in conjunction with the C-S-H precipitation and in the context of

their aggregation and gelation. This has been done through the development of a non-

equilibrium mesoscale model.
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Figure 1.8: Interactions with competing attractive and repulsive forces. An example
phase diagram for a system with competing interactions, where ρ is the density, p is the
pressure, and T , the effective temperature, is the inverse interaction energy [156]. The pre-
cipitation of C-S-H and the evolution of their interactions drives the system through dif-
ferent regions of this diagram, affecting the morphology of the final material.

1.4 A NON-EQUILIBRIUM MESOSCALE MODEL

To study the microstructure of cement in the context of C-S-H precipitation and evolving

effective interactions, Ioannidou et al developed a computational model combining molec-

ular dynamics of C-S-H particles with pairwise interactions and a Grand Canonical Monte

Carlo scheme of adding/deleting particles [63]. In the GCMC framework, the system is

linked to a fictitious reservoir of particles that have a chemical potential µ . By imposing

a large µ , particle creation is energetically favorable in the simulations without explicitly

accounting for the chemical conditions that make it so in the real system. The GCMC pro-

cess allows them to mimic the C-S-H precipitation in a coarse-grained approach that can

effectively model the mesoscale C-S-H gelation.
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Through this model, it is possible to explore the dynamics and morphology related

to a specific interaction potential in non-equilibrium conditions. Starting with only a few

particles, the GCMC exchanges tend to add particles. Although the final equilibrium state

corresponding to the chosen µ is unknown, this state is never reached in practice. As the

system becomes very dense, particle addition becomes a slow process, and the system gets

trapped out of equilibrium. In reality, this is comparable to what happens in real cement

where C-S-H keeps precipitating and there are signs of continued, albeit excruciatingly

slow, reaction years after it has hardened.

1.4.1 THE ROLE OF THE INTERACTIONS

Ioannidou et al examined in detail the features associated with a potential that has an

attractive well and repulsive shoulder in non-equilibrium conditions, inspired by the exper-

iments of Plassard [107]. By varying the height of the shoulder, they considered potentials

that reproduced the potentials seen at early and late stages of cement hydration. While

the GCMC scheme is obviously a large simplification of the precipitation process, it

allowed them to deal with a simpler system which only included the C-S-H particles

instead of all the different atomistic species. This approach was found to produce acceler-

ating/decelerating regimes, akin to the calorimetry measurements in experiments, due to

formation of a space-filling gel (Fig. 1.9) [63].

In these non-equilibrium simulations, the gel morphology was found to be strongly

dependent on the interaction. Their results indicated that the Early Stage (ES) interactions

favored rapid growth/gelation and early mechanical properties, while the Late Stage (LS)

interactions favored densification [64]. The early gelation promotes a more uniform densi-

fication because the pore size distribution in the gel tends to be more uniform and thus plays

an additional important role in the final mechanical strength of the material. The differences

in local structure were quantified using the bond orientational order (BOO). Introduced by
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Figure 1.9: C-S-H precipitation in mesoscale simulations. Left: Evolution of volume
fraction φ with MD time for different MC rates (MC steps/MD steps) obtained in the sim-
ulations of [63]. Acceleration and deceleration regimes arise naturally due to the formation
of a space-filling gel. Right: Calorimetry curves measure the heat flow which is propor-
tional to the rate of the exothermic reaction [22].

Steinhardt in 1983, this method of examining the orientation of bonds between particles

allows one to precisely determine the local ordering and packing in amorphous systems

[133]. The rotational invariants, computed from the projections of the bond angles onto the

spherical harmonics, allow one to differentiate between the locally crystalline ordering of

the late stage potential and the Bernal spiral-based ordering of the early stage (Fig. 1.10,

left). The latter corresponds to face-sharing tetrahedra that are prevalent in the fibrillar gel

typical of ES interactions.

The large differences that arise from changing the interaction potential in these simu-

lations, considering the changing interactions in the real system, suggest that said change

plays an important role in cement hydration. In this scenario, the formation of elongated,

Bernal Spiral structures in the early stages leads to early percolation of a load-bearing struc-

ture across the sample and the reduced repulsion at late stages promotes strengthening the

existing framework, forming locally dense, compact, and stiffer structures.
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Figure 1.10: Local packing in mesoscale simulations and spatial gradients in cement
paste. Heat maps of the rotational invariants (ŵ4, ŵ6) for the early stage (left) and late
stage (center) potentials from Ref [64]. Values corresponding to fcc, hcp, and Bernal spiral
ordering have been labeled. Right: TEM images of the early stage C-S-H gels show clear
anisotropy as they grow from cement grain surfaces [35]. There is also a density gradient
as the darker regions at the right (near the cement grain surface) are notably denser than the
regions to the left.

The specific way in which C-S-H forms has a clear impact on the overall morphology

of the final material, and these studies have demonstrated how the heterogeneous C-S-H

growth happens in conjunction with the changing interaction potential (due to evolving

chemistry). While this approach captures several aspects of the C-S-H growth and gelation,

it does not consider that during cement hydration there are typically strong spatial gradi-

ents in C-S-H formation—for example, due to the ion concentrations being higher close to

the surface of the dissolving cement grains. In the literature, these effects are recognized

by distinguishing between “inner product” and “outer product” [32], or in terms of “low

density” or “high density” C-S-H [139]. TEM images in the right panel of Fig. 1.10 show

an example of the spatial density gradients and structural anisotropy induced by the het-

erogeneous growth of C-S-H during hydration [35]. I have built on the work of Ioannidou

et al [63, 64, 65] to investigate the role of these spatial gradients in the development of the

gel morphology, also considering the effect of different interactions as cement hydration
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proceeds. The new model, the investigations performed, and the outcomes of my study will

be discussed in Ch. 2 and Ch. 5.

1.4.2 MECHANICAL AND STRUCTURAL PROPERTIES

The mesoscale texture of the C-S-H obtained from the simulations of the Ioannidou

approach [65] have been analyzed in terms of structural and mechanical properties to

compare with experiments. Continuing precipitation to high volume fractions allowed

Ioannidou et al to reach conditions comparable to the hardened paste starting from the

softer gels [65]. By doing nanoindentation tests, they measured a modulus that was con-

sistent with experimental measurements at high volume fraction (Fig. 1.11), and this

model with progressively increasing density also allowed them to measure the mechanical

strength of the initially less dense gel where experimental measurements are challenging.

Performing a similar comparison with scattering data, they observed a I(q) ∝ q−3 scaling,

consistent with experiments, over the range of 0.1nm−1 < q < 1nm−1. At smaller q, the

finite simulation volume disrupted this trend, and at larger q they observed a Porod q−4

scaling, consistent with the effects of their particle size. This indicates that their simulations

exhibit structure across a wide range of length scales, much like that found by experimental

scattering data.

These comparisons demonstrate that this mesoscale modeling can be used to probe the

mechanical and structural properties of hydrated cement. An advantage of these models that

can be explored further is the ability to quantitatively study these properties during earlier

stages of hydration, when experiments are more challenging due to the rapid changes in

the material. This is crucial for advanced material design that requires precise control of

the flowability and strength of the hydrating cement paste. In Ch. 5, I will discuss my

ongoing work to develop a quantitative understanding of the rheology of cement pastes in

connection with the nanoscale cohesion of C-S-H and their mesoscale morphology.
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Figure 1.11: Comparison of mesoscale simulations and experiments. Comparison of
experimental and computed values of the naono-indentation modulus (left) and scattering
intensity (right) [65].

1.5 SUMMARY

Cement is the most used synthetic material in the world, responsible for 8% of global CO2

emissions [7]. Its hydration leads to the formation of a cement hydrate (C-S-H) gel network,

which is responsible for binding concrete and providing its mechanical strength. From the

nanoscale electrostatic cohesion, to the mesoscale gel network formed out of equilibrium,

to the microscopic underpinnings of the macroscopic material properties, I have provided

an overview of the main theoretical and modeling questions to be addressed in order to

develop a scientific understanding of this complex material.

In the next chapter, I will discuss my work on a new formulation of the Ioannidou

approach [63, 64, 65] that includes spatial gradients. I will investigate the heterogeneous

growth of C-S-H in the context of time-evolving effective interactions and show how the

evolution of those interactions controls the development of spatial gradients and anisotropy

in the C-S-H microstructure.
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CHAPTER 2

CALCIUM-SILICATE-HYDRATE GELATION AND MICROSTRUCTURE

The combination of reaction kinetics driving the nucleation and growth of C-S-H particles

[46, 141] with changing effective interactions [78, 107] drives the non-equilibrium forma-

tion of the C-S-H gel. This pathway has a clear effect on the microstructure, which shows

strong spatial gradients and anisotropy, and it is in this context that the we need to under-

stand the development of C-S-H morphology during hydration. To do so, one important

question to answer is how exactly the way C-S-H forms affects its final properties. Another

is how the changing interactions couple to the non-uniform C-S-H precipitation.

We use a mesoscale model to answer these questions, expanding on work which has

had success in understanding the role of the changing interactions [64] and their effects on

the hardened paste [65]. Specifically, we implement a spatial gradient in the C-S-H precip-

itation, corresponding to the nucleation of C-S-H at cement grain surfaces. Using a wide

range of computational analysis tools, we then characterize the C-S-H network, pore struc-

ture, internal stresses, and more. This analysis gives insight into the effect of heterogeneous

C-S-H growth mechanisms on the overall microstructure, but it also demonstrates how this

effect is enhanced or limited by the features of the interaction potential. In particular, non-

contact repulsion, due to electrostatics and present in the early stages of hydration, can

limit the density gradients and anisotropy of the C-S-H gel. The results obtained may help

explain the surprising robustness of the C-S-H gel against phase separation induced by

density gradients and against the formation of a dense C-S-H layer at the cement grain
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surface that can block or slow down further reaction. Understanding the role of the inter-

actions during the heterogeneous formation of the C-S-H gel is an important step towards

designing new and better cementitious materials.

2.1 THE MODEL

In our model, C-S-H nanoparticles are coarse-grained and treated as spherical particles of

fixed size. An effective interaction potential is prescribed to these particles that includes the

net interactions mediated by the solvent. The physics behind these interactions is a com-

plex problem in itself. It has been studied extensively via both experiment and simulation

[14, 73, 74, 78, 89, 105, 107] and will be the subject of Ch. 3 and Ch. 4. The forces at

play emerge from the fluctuations of the electrolyte solution confined between the highly

charged C-S-H surfaces. While we do not include the solvent and counterions explicitly

in the model here, it is the correlations between these species that give rise to strongly

attractive non-contact forces between C-S-H nanoparticles. These correlations are highly

dependent on ion concentrations and pH [107], so the overall interactions change over time

as the continued dissolution of cement alters the solution chemistry.

For simplicity, we consider fixed forms for the effective interaction during precipitation

but investigate two different forms. Following the example of previous studies [63, 64], we

implement a potential that has a short-range attractive well coupled with a longer-range

repulsive barrier—a shape that is consistent with both the experimental and simulation

work done [105, 107]. In Ch. 3 and Ch. 4 I will discuss the emergence of these interactions

from the nanoscale physics of C-S-H, as well as how such interactions might be relevant to

a wide range of materials.

The quantitative form of the interaction potential is:
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Figure 2.1: Interaction potential and chemical potential in simulations. Left: We use
two sets of parameters A1,A2 to consider different repulsive strengths. These are labeled
Early Stage (ES) and Late Stage (LS) corresponding to a high and low repulsive barrier
present in early and late stages of cement setting. Right: A schematic of the variation of
µ across our system. By considering a simulation volume between two cement grains, we
introduce a spatial gradient in the hydration and the precipitation of C-S-H nanoparticles.
The cement grain surface is not included explicitly, but rather through an effect on the local
µ , turning it into a spatially varying quantity.
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[(σ
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)24
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(σ
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)12
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+A2

e−κr

r
(2.1)

where A1 and A2 are constants, σ and ε are the length and energy scales (discussed further

in next section), and κ is the inverse Debye screening length. Due to the observation that the

potential features depend on the chemistry of the cement solution [107]—which changes

as cement dissolves—we consider two sets of parameters corresponding to Early and Later

Stages (ES,LS) of cement hydration (Fig. 2.1, left). The ES potential exhibits a stronger

repulsive barrier with A1 = 9.6 and A2 = 12, while the LS exhibits reduced repulsion but

similar attraction with A1 = 6 and A2 = 4.
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In the physical system, C-S-H does not exist in equilibrium conditions. In fact, as the

reaction proceeds, more and more C-S-H is created from the combination of ions and water

[138]. These species are not included explicitly in our model, but we mimic this precipita-

tion via a Grand Canonical Monte Carlo (GCMC) process, where particles are inserted and

deleted with a probability given by the Metropolis Monte Carlo scheme [45]:

Pins/del ∝ min[1,e±β (µexc−∆U)] (2.2)

where β = 1
kBT , kB is the Boltzmann constant, T is the temperature, µexc is the excess

chemical potential, and ∆U is the total change in the energy upon inserting/deleting a par-

ticle. In a closed system, µexc is associated with all the interactions between particles and

depends on the density and phase equilibria.

During cement hydration, the dissolution of cement grains increases the overall con-

centration of ions in solution, and when saturated they combine to form a C-S-H molecule

[138]. As we have coarse-grained out these degrees of freedom, the usual equilibrium

chemical potential is not sufficient to describe this. Instead, we consider that the back-

ground chemistry has an effect of producing a net free energy gain with the creation of

C-S-H.

With this assumption in mind, we take µexc to have two components:

µexc = µinteraction +µchemical (2.3)

The interaction term is the usual µexc [45], while the chemical term represents the free

energy gain of calcium, silicon, oxygen, and hydrogen coming together to form a C-S-H

nanoparticle. While the equilibrium value of the first term can be computed (and indeed,

it has, for example in [64, 150]), this chemical term is difficult to estimate. Considering

that densification does not stop during cement hydration [46], previous studies have used a

value of µexc that favors insertion [63].
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Our scenario here is different because we want C-S-H precipitation to vary spatially.

There is a tendency for C-S-H to grow at the surface of cement grains or other nucleation

sites [46, 141]. If we consider our simulation box to be part of a pore between two cement

grains (Fig. 2.1, right), the hydration of the cement occurs near the edges of the box, as,

consequentially, does the precipitation of new C-S-H nanoparticles. To implement this, we

consider µexc(z) to be a quantity that depends on position. Near the edges, a higher µexc

will favor insertion, while far from the cement grains a lower µexc will discourage insertion

unless it is close to existing particles.

This GCMC process is combined with Molecular dynamics (MD) of the C-S-H parti-

cles. Due to this coupling, the system exists in a non-equilibrium state where the kinetics

of the reaction (mimiced by GCMC) affect the morphology of the system that evolve in

time through MD. The rate R, which is the ratio of GCMC exchanges to MD steps, can

be thought of as setting how fast a C-S-H particle creation occurs. When R is very high or

very low, the behavior of the system would be essentially dictated by either the precipita-

tion kinetics (GCMC) or by the dynamical aggregation (MD). However, when R ∼ O(1),

we are in a situation where the C-S-H precipitation and the particle dynamics interfere with

each other to determine the gel morphology.

2.2 SIMULATION DETAILS

We use m as the unit mass, σ as the unit length, and ε as the unit energy, which defines

a unit time τ =
√

mσ2

ε . The simulation volume is a periodic cubic box of side length L =

49.2σ , in which we perform molecular dynamics in an NVT ensemble with a Nosé-Hoover

thermostat [45] at temperature kBT = 0.15ε , which is comparable to room temperature

when the interaction strength is calibrated to a modulus of 20MPa for a C-S-H gel at early

hydration times [64]. We solve the Newtonian equations of motion using the velocity Verlet
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algorithm with a time step of .0025τ . The GCMC and MD simulations here are done using

LAMMPS [108].

For GCMC exchanges, the simulation box is split into three regions along the z-axis.

The top and bottom slices are high µ regions of thickness 5σ . In the case of ES (see

Fig. 2.1) we assign µES = 6ε , while for the LS case we set µLS = 1.5ε . The middle region

has thickness 40σ and lower values of µES = −1ε and µLS = −1.5ε respectively. These

values have been calibrated so that insertion is always preferred in the edge regions, while

in the middle regions it can only happen near existing clusters.

In the simulations, the MD and GCMC parts are connected through the rate parameter

R. This is the ratio of the number of GCMC exchanges to the number of MD time steps,

and previous studies have found only qualitative differences when varying R over the range

of R = .5−R = 4 [63]. Here we present results for R = 4, with 400 GCMC exchanges

attempted every 100 MD steps. The number of insertions/deletions varies, but there are

approximately 200 of each for every GCMC cycle. As we run the MD and GCMC, par-

ticles are inserted into the initially empty simulation box, and simulations are run until

N ≈ 57,000: corresponding to a volume fraction of φ = 0.25. Here φ is estimated con-

sidering spheres of diameter σ , and hence computed as φ = Nπσ3

6L3 . The whole simulations

requires approximately 106 MD steps, with variations that depend on the interaction poten-

tial. The MD time can be converted to real time (hydration time in the experiments) using

the argument developed in [63], which indicates that texp ∝ log tsim.

From the results of these simulations, we analyze the structural and morphological fea-

tures. In the next section, the analysis of the clusters and of the connectivity percolation are

presented in the reduced units just mentioned (m, σ , ε , τ , and unit pressure ε/σ3), showing

the gradients and anisotropies that arise due to heterogeneous growth of C-S-H. We also

discuss the role of the interaction potential on these features.
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Figure 2.2: Volume fraction φ vs simulation time. The variation of total and local
(edge,middle) φ as the simulations progress. With LS interactions, the non-uniform µ leads
to a much larger local φ difference between the edge and middle regions. The formation of
a locally dense, crystalline (see Fig. 2.7) layer near the cement grain surface is consistent
with observations of the inner product or high-density C-S-H [32, 139].

2.3 CLUSTERS AND PERCOLATION

The choice of using a Grand Canonical ensemble allows the insertion of particles to occur

at a non-uniform rate in a way that depends on the state of the system. As seen in Fig. 2.2,

the total volume fraction φ starts to increase more rapidly as particles are inserted—until φ

saturates due to increasing density and steric repulsion between particles.

Fig. 2.2 also shows local φ in the edge and middle regions, defined as the 5σ thick high

µ regions and the 39.2σ thick low µ region respectively. Due to diffusion of particles from

the edge, the middle region actually becomes denser than the edge for a period, starting

around t = 105 MD steps. This reversal ends around φ = 15% when the edge φ starts to

rise rapidly. For LS, this also corresponds to a sudden decrease in dφ/dt in the middle,

as the dense structure at the edge limits diffusion. For ES, the increased growth rate at the
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Figure 2.3: Simulation snapshots. At an overall volume fraction φ = 25%, snapshots
show the microstructure for the ES potential (left) and LS potential (right). Color indicates
number of neighbors (from blue=0 to red=12).

edge is correlated with an increased growth rate in the middle. This holds until φ ≈ 22%,

when the deletions in the low µ regions balance the diffusion from the edge region.

We see a morphological difference between the two regions which becomes increas-

ingly pronounced as more particles are inserted. Fig. 2.3 shows that particles in at the

edge tend to be more clustered and have higher coordination. In these snapshots, at φ =

25%, simulations with both potentials show the formation of a percolated, system-spanning

cluster. During the simulation, as φ increases, clusters grow and aggregate into a con-

nected structure, and these morphological changes also couple back to how quickly and

uniformly—or not—φ increases. While the C-S-H clusters eventually percolate in both

cases, the way that structure forms and its final morphology are quite different.

To begin examining this process quantitatively, we group particles into clusters by

defining a bonding distance, rb. We use rb = 1.1σ here, corresponding to a bond distance

such that two particles are near the minimum of the interaction potential, after having con-
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firmed that varying rb around this value does not change our results. Note that these bonds

and clusters are defined solely by instantaneous distance, but because of the interaction

strength chosen (kBT = 0.15ε) they correspond to C-S-H particles that adhere to each other

and do not continuously break and reform over time. Cluster percolation is defined as the

formation of a cluster which spans the simulation box in x, y, and z directions. Fig. 2.4

shows the percolation probability, i.e. the fraction of independently generated systems that

formed, in the same conditions of precipitation rate R, interaction strength ε , and volume

fraction φ , a percolating connected structure. We gathered statistics from 10 independent

samples for each potential. We see that, for ES, the percolation transition is more sharply

defined, i.e. it happens over a narrow range of φ . On the other hand, with LS there is a 6%

volume fraction difference between the first occurrence of a percolating cluster and 100%

percolation. Interestingly, the percolation seems to correspond with the density cross-over

seen in Fig. 2.2 at φ = 15% (where the local φ at the edge starts to rapidly rise over that

in the middle). This suggests that the percolating cluster limits particle diffusion from the

edge to the middle—especially for the LS potential.

In order to understand the mechanical implications of this percolation, we looked at the

build-up of internal stresses within the material. Using the virial formulation of the stress

tensor, one can define a coarse-grained local stress tensor [146]. To focus our analysis on

the stresses associated with particle interactions rather than thermal motion, we neglect the

kinetic term and obtain:

σαβ =− 1
Vcg

∑
iεVcg

∑
j 6=i

1
2

F i j
α ri j

β , (2.4)

where α and β indicate the vector components while i and j are summed over individual

particles. Taking the trace of this gives us a local pressure which describes the forces a

particle experiences and converges to the total pressure if we expand the coarse-graining
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Figure 2.4: Percolation of C-S-H network. The geometric percolation probability as a
function of φ . The particles are clustered according to a distance cutoff of 1.1σ . A cluster
is considered percolating if it spans the system in x, y, and z directions. This says nothing
about the persistence or rigidity of the percolating cluster, and is a geometric definition
rather than a mechanical one.

volume, Vcg. For the results presented, we use Vcg =
4
3πr3

c , the cutoff of the potential. Small

variations of Vcg do not produce any qualitative differences.

Fig. 2.5 shows the local pressure distributions for two values of φ in the edge and middle

regions. They are plotted with Guassian fit lines and show fairly normal distributions within

each region. Around the percolation transition at φ = 15% we see that ES and LS have

similar distributions, but they are shifted due to the extra repulsion in ES. In both cases,

there is a sharply defined value in the middle region, while the denser edges have a wider

spread. Since the local φ in each region is roughly the same (see Fig. 2.2), it’s interesting

that there is such a difference in the stress distributions, indicating that the two regions

arrived at φ = 15% through different paths, which in turn modified the local morphology

and stresses.
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Figure 2.5: Internal stress distributions. Distributions of local pressure at the edge (circle
symbols) and center (square symbols). Gaussian fits are also plotted as dashed lines.

As we add particles and go to φ = 20%, the stresses in the ES case become more uni-

form across the simulation box. The center distribution widens and the peak of the edge

distribution shifts. Once the connected structure percolates, the stresses can be transmitted

between regions, and this serves as a mechanism to reduce the initial heterogeneities intro-

duced by the chemical potential gradient. In contrast, the LS samples maintain the extreme

differences in edge vs center distributions, indicating that they are not effectively con-

nected to allow for a stress redistribution. The geometric percolation of a cluster is enough

to reduce the diffusion but not necessarily to transmit stresses, which suggests that the ES

interactions are crucial to give the product an early mechanical response, as experiments

have seen for cement mixtures [80].

In Fig. 2.6, we show snapshots from our simulations at φ = 20%, color coded according

to local pressure. As one would expect from the stress distributions, the system snapshots

show stresses that are more uniformly distributed for ES. In addition, there is no pro-

nounced morphological difference between the edge and center regions. For LS, there is
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Figure 2.6: Stress snapshots. A thin (5σ ) slice of our system at φ = 20% for ES (top)
and LS (bottom). The coloring corresponds to the local pressure, with red being positive
pressure—i.e. parts under compression—and blue being negative pressure.

a clear distinction with most stressed areas lying on the edge of the system, which also

corresponds to local structures that clearly differ from the edge to the middle.

To characterize the differences in the local structure, we computed the Steinhardt Bond

Orientational Order Parameters (BOOPs) [133]. These are obtained from the angular ori-

entation of the bonds defined by distance, the same criteria we use to define clusters. For a

bond with some orientation~r, we consider the spherical harmonic function, Ylm(θ(~r)φ(~r)).

The BOOPs, qlm, are defined as an average over the bonds of a particle:

qlm(i) =
1

Nbi

Nbi

∑
j=1

Ylm(θ(~ri j)φ(~ri j)) (2.5)

We are interested in the even l terms, which are independent of an arbitrary choice of bond

direction. Since these terms are still dependent on the choice of reference frame though, we

consider rotationally invariant combinations of qlm. The second-order rotational invariants

are

ql(i) =

√√√√ 4π
2l +1

l

∑
m=−l

|qlm(i)|2 (2.6)
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and the third-order invariants are

ŵl(i) = wl(i)/

[
l

∑
m=−l

|qlm(i)|2
]3/2

(2.7)

where

wl(i) = ∑
m1,m2,m3

(
l l l

m1 m2 m3

)
qlm1(i)qlm2(i)qlm3(i) (2.8)

where the coefficients are the Wigner 3-j coefficients and the sum is over values such that

m1 +m2 +m3 = 0. Specifically, the set of {q4,q6, ŵ4, ŵ6} are generally sufficient to char-

acterize the order typical of the local packing relevant here [64]. In particular, we focus on

ŵ6 because it captures the difference between crystalline (fcc and hcp) and Bernal spiral

ordering (the latter characterizes spirals of face sharing tetrahedra, which, as shown below,

are very prevalent in certain conditions).

In Fig. 2.7 we see that both ES and LS at φ = 20% have clear signals of Bernal spirals

in the central region. At the edge, ES maintains that ordering while the denser LS shifts into

a more crystalline morphology. This further demonstrates that LS is more sensitive to the

spatial gradients introduced in our study. While the percolated ES system is quite uniform,

with LS the percolation leads to increasing morphological heterogeneity.

The concept of two different morphological forms of C-S-H (inner vs outer, high-

density vs low-density) with different elastic properties has been well established in the

literature [32, 139]. The locally dense and crystalline region we observe close to the cement

grain surfaces with the LS interaction could therefore mirror what is seen experimentally,

as does the fibrillar form taken far from the surfaces—demonstrating how these features

can arise and persist as the interactions change during cement hydration.

The heterogeneities in density, stresses, and local packing present with the LS potential

arise due to the spatial gradient in chemical potential µ , and are coupled to the anisotropy

that develops in the underlying network topology. In a quantitative sense, this can be probed
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Figure 2.7: Local packing of C-S-H. The distributions of the local BOOP as first intro-
duced by Steinhardt [133]. This provides a way to quantify the spatial differences in
ordering. Here we show the rotational invariant ŵ6 which is useful for differentiating
between Bernal Spiral ordering and crystalline fcc/hcp ordering. The ordering observed
in the center region is quite similar for both potentials, but near the edge, the LS potential
forms a much denser layer (Fig. 2.2) with more crystalline ordering.

by considering a random walk on the network graph constructed from the bonds in struc-

tures analyzed so far. The corresponding mean squared displacement (MSDg) is plotted in

Fig. 2.8 as a function of the number of steps taken along the graph. The x and y directions

are expected to be symmetric in a statistical sense, and unsurprisingly the MSDg along

those directions is equal. On the other hand, the z direction—the direction of the spatial

µ gradient—is set up to be distinct from the others, and we’ve shown there are clear het-

erogeneities along this direction. These have a clear effect on the network graph as the z

displacement differs from x and y for both ES and LS potentials. Notably, like the other

measured properties, this difference is far more pronounced with the LS potential, demon-

strating that the anisotropy in the particle insertion has been built into the network topology.

Just as important is the observation that, although there is some shift, the z displacement
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Figure 2.8: Network graph analysis. Mean square displacement (in reduced units, i.e.
particle diameter squared) along x, y, and z directions from a random walk along the net-
work graph corresponding to simulated structures from ES and LS potentials at φ = 25%.
Black line indicates what purely Brownian motion would be, and MSDg is found to be
sub-diffusive. Due to the inherently anisotropic way in which the network is created, one
expects and finds the displacement along z to differ from x and y. Notably, this difference,
and thus the underlying anisotropy of the network, are enhanced for LS, where MSDg ∝ τ0.7

for the z direction instead of τ0.8 as in the other directions.

with ES still closely mirrors the x and y. The homogenization of stresses and ordering is

coupled to an erasure of the underlying anisotropy.

2.4 POROSITY

Having characterized the solid network in terms of its percolation, internal stresses, and

anisotropy, it is important to understand their implications on the associated pore net-

work. The size, shape, and connectedness of pores not only directly affect the compressive

strength, but also the long-term stability and resistance to fracture of cement. Addition-

ally, the permeability of the pore network is crucial to the continued reaction of water and
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Figure 2.9: Pore size distribution (PSD) in C-S-H gel. Left: The PSD with ES potential
for several volume fractions. The pore frequency describes what fraction of pore space is
occupied by pores of a given radius. Right: The first moment of the PSD for both potentials
as a function of φ . The solid line represents the low µ middle region, while the dashed line
is for the high µ edge.

cement. Without this, the reaction area would be completely blocked off early in the hydra-

tion and stop the reaction.

To start, we compute the pore size distribution (PSD). This is generated using the

method of Bhattacharya and Gubbins [12]. It consists of constructing a finite grid, taking

points in the pore space, and determining the largest possible radius of a sphere that can

fit there without overlapping any particles. This sphere is not necessarily centered at the

grid point: Shor’s r-algorithm is used to find a local maximum for the radius of a non-

overlapping sphere, constrained to include the selected grid point. From this calculation

we generate the pore frequency p(s), which indicates the fraction p of the total pore space

that corresponds to pores of size s. Note that this method does not provide the shape of the

pores: what we obtain corresponds to the smallest linear size of the pore.

The left panel of Fig. 2.9 shows the full pore size distribution with the ES potential. We

see that the peak pore size is fixed after percolation, maintaining the permeability of the
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network. The increasing frequency at s = 0.5nm corresponds to the packing of spherical

particles in high density regions. There is no such clear trend for the LS PSD, and we must

separate the edge and center regions to understand what is happening. In the right panel of

Fig. 2.9, we plot the first moment of the PSD for both potentials, separated into edge and

center regions, as a function of volume fraction.

Looking at the ES results through this new lens, we see that there is a difference in the

porosity across the system. At φ = 25%, the ≈ 10% local difference in volume fraction

between edge and center leads to the pores at the edge being a bit smaller. However, rela-

tively speaking, the density difference and consequently the pore size difference is not very

large with the ES system. On the other hand, the LS system shows a remarkable transfor-

mation after percolation. The edge pores rapidly close up—just as the edge φ shoots up dra-

matically (see Fig. 2.2)—while almost paradoxically the central pore sizes start to increase

with increasing particle number. This is consistent with the coarsening of the initial struc-

ture, which would lead to two separated dense C-S-H layers near the system edges. This

heterogeneous pore formation has consequences for diffusion through the pores, which can

be quantified by performing a random walk in the pore space.

This random walk can be thought of as the trajectory of a particle diffusing through

the pores, and in Fig. 2.10, we plot the corresponding MSD. When split into x,y, and z

components, the data shows that the pore network tortuosity is isotropic for ES but not

LS. With LS, the x and y components are comparable to the porosity of ES, but the z

direction displays a higher tortuosity—indicating reduced diffusivity through the pores. As

the cement grain surfaces are modeled to be along this z direction, the diffusion is necessary

for the continuation of the cement hydration. Premature closure of pores could prevent a

sufficient degree of hydration being reached.

42



Figure 2.10: Diffusion in C-S-H pores. Diffusion through the pore space of the structures
corresponding to the two potentials at φ = 25%. This is computed from a random walk in
the pore space. Assuming that a particle following this random trajectory moves at some
fixed speed, one can obtain the overall displacement with time. In an isotropic pore net-
work, this displacement would be evenly split between x, y, and z directions—as in the ES
case. For LS however, there is a decreased displacement along the z direction indicating an
increased tortuosity of the pores along z.

2.5 SPECIFIC SURFACE AREA

Experimentally, the porosity of cement pastes can be characterized in terms of the specific

surface area, Ssp, which is defined as the total surface area of all pores per unit mass. This

is probed by scattering experiments or by measuring the ability of the material to uptake

gasses such as Nitrogen or water vapor into pores. From our simulations, it is possible to

calculate Ssp through the statistics of the pores. In particular, we first compute the pore

chord length distribution, that is, the distribution of lengths lp that randomly drawn chords

can traverse in the pore space without intersecting a particle. Our results for φ = 25%

(Figure 2.11) show that the chord length distribution p(lp) for ES exhibits a local peak

at lp = 10nm, consistent with the data in the PSD (peaked at pore radius s = 5nm) of
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Figure 2.11: Chord length distribution in pores. The chord length distribution shows
the length of chords drawn randomly in the pore space. The results with ES show a more
pronounced peak at intermediate sizes due to the well-controlled pore size.

Fig. 2.9 and demonstrating that there is a characteristic size associated with the porosity

for ES—a feature that is less pronounced for LS. The repulsive barrier in the two potentials

introduces a length scale to our system which affects the porosity, and the strength of that

barrier controls how important this length scale is.

From the mean of the chord length distribution < lp >, we calculate the specific surface

area Ssp of our system using, according to Refs [79, 103]:

Ssp =
4(1−φ)

ρφ < lp >
(2.9)

where ρ is the density of the C-S-H matrix, which is estimated to be 2.43g/cm3 from

atomistic simulations [2, 106]. Due to the discrete nature of numerical calculations, the

chord length distribution is computed with a finite cutoff lc, which affects the value of Ssp.

To obtain the true surface area, one can calculate this by varying lc and extrapolating to the

lc = 0 limit.
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Figure 2.12: Specific surface area of C-S-H gel. Left: The specific surface area as a
function of the chosen chord length cutoff. By fitting the calculated data points to f (lc) =

A
1+Blc

+C, we extrapolate to the lc = 0 limit and obtain the geometric surface area Ssp =
A+C. Right: The value for specific surface area obtained by extrapolation for different
volume fraction φ .

The specific surface area computed depends on lc differently for the two potentials. This

is something that needs to be considered when trying to compare with experimental data.

Interestingly, despite the clearly different nature of the porosity for ES and LS, we actually

end up with quite similar overall surface area. However, in comparison with experiments

we must be careful of these different features and try to understand which parts of the

porosity an experiment will be able to access. These limitations will apply differently to

the two gel morphologies corresponding to ES and LS.

The values reported for Ssp of hardened cement paste by gas sorption experiments vary

in the range of approximately 50m2/g to 200m2/g [10, 92, 138, 144, 145]. Meanwhile,

mesoscale simulations [65] have reported values of Ssp = 347m2/g and Ssp = 283m2/g for

φ = 33% and φ = 52% respectively. Our results are clearly significantly higher than these

values, plateauing around Ssp = 600m2/g at φ = 25%. However, given that Ssp decreases

with increasing φ , that is expected. At the very early stages of hydration, which our simu-
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lations correspond to, experimental measurements are challenging due to how rapidly the

material changes. Additionally, there is a significant quantity of unreacted cement at this

stage, skewing possible experimental results in comparison to our simulations (which do

not explicitly contain cement grains). A study by Suda et al suggests the specific surface

area associated with C-S-H only is closer to 200−300m2/g [135]. Finally, one should keep

in mind that no matter how sensitive, sorption techniques only access well-connected pores

of sufficient size. If we take a larger lc such that only pores of diameter greater than 3nm

are considered, Ssp falls to about 300m2/g. Alternatively, if we look at results from more

sensitive SAXS (small angle X-ray scattering) experiments, values of Ssp > 500m2/g have

been reported [145, 152].

2.6 SCATTERING

In addition to measuring the specific surface area, neutron and x-ray scattering experiments

have been used to characterize the microstructure of cement pastes—and are one of the

most powerful tools to do so. The usual way to compute I(~q) is as the Fourier transform

of the autocorrelation of fluctuations in local density, η2(~r) = 1
V
∫

d3r′(ρ(~r′)− ρ̄)(ρ(~r′+

~r)− ρ̄), of our simulated microstructures (Fig. 2.13), where ρ(~r) is the local density and

ρ̄ the average density [19]. In case of an anisotropic medium, this computation is more

involved due to the need to compute η2(~r) for each orientation of~r prior to performing the

3D Fourier transform.

A second way, more numerical tractable, was proposed in [20, 44]. This a two-step

process. First a projection image of the chosen 3D binary structure is performed either along

the x or y or z direction. Second, a 2D Fourier transform of this projection is calculated.

The associated spectral density gives directly I(qx,qy,qz) with either qx = 0 or qy = 0 or

qz = 0. For example, the projection along the optical axis x will allow one to get the 2D
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Figure 2.13: Scattering cross-section. A 2D projection of local densities in the LS struc-
ture at φ = 25% when looking down the y-axis. The darker regions correspond to higher
density. Scattering intensity I(q) can be computed from the autocorrelation of fluctuations
in the local density, η2(r).

pattern I(qx = 0,qy,qz). To estimate the level of anisotropy, an angular average along the

principal directions of these 2D scattering patterns is performed using a averaging angle of

15 degrees. A comparison of the two methods is presented in [44], showing a very good

agreement.

Due to the anisotropy in the structure, the choice of optical axis for the scattering natu-

rally affects the results obtained. Due to the symmetries in our system, the x and y directions

are equivalent—anisotropy is associated with the z, i.e. µ-gradient, direction. If one con-

siders an optical direction along a non-z axis, the µ and density gradients produce clear

differences in the low q scattering intensity along the z direction compared to the x or y

(Fig. 2.14). For both ES and LS potentials, the scattering along z exhibits low q structure

(instead of a plateau as along x or y), which is consistent with the system-spanning density

gradient along z. The high q scattering is instead dominated by the oscillations typical of

monodispersed spherical particles [54].

47



Figure 2.14: Scattering intensity. The scattering intensity is computed for both potentials
for various different optical axes. The intensity is split into components along different
directions to highlight anisotropy. The scattering component along z differs from the others
at low q due to anisotropy in the structure. Surprisingly, for ES this effect is suppressed if
we consider only the center region—meaning all of the measured anisotropy is due to the
density variation across the whole box. Meanwhile, for LS, even the center region alone
deviates from the x and y scattering. The structure is anisotropic even at scales smaller than
the system-wide µ gradient. The high q oscillations are consistent with having monodis-
persed spherical particles

One can also consider just the scattering from the center region of the system (green

triangles in Fig. 2.14). Limiting ourselves to this region reveals an interesting difference

between the two potentials. With LS, the z scattering deviates from y scattering in the low

µ center region as well—highlighting that the anisotropy in the structure goes beyond the

large difference in density, stresses, porosity, etc. between the edge and center regions.

On the other hand, for ES, this split leads to a suppression of scattering anisotropy and

produces a curve which matches the scattering along x. This suggests that the anisotropy is

due entirely to the differences between the high and low µ regions.

The anisotropy induced by the cement grain surfaces manifests itself in our calculated

scattering intensity. For a macroscopic sample, these grains would be distributed randomly

and give an overall isotropic response due to the statistical averaging of the results. The
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isotropic I(q) has been computed using similar mesoscale models for high volume fractions

[65], and it was found to match experimental measurements of scattering intensity. It is

difficult to make such a connection using our simulations due to limitations of system

size at low q and the effects of particle size monodispersity at high q. Nonetheless, this

calculation has revealed interesting differences in the anisotropy of ES and LS systems.

Future studies can expand on this to make a direct connection to scattering experiments.

2.7 CONCLUSIONS

We used MD and GCMC simulations to investigate the effect of C-S-H growth in the

presence of spatial gradients of C-S-H precipitation and of the changing effective interac-

tions between C-S-H nanoparticles on the overall morphology of the C-S-H gel. By using

the GCMC to mimic precipitation of nanoparticles, we observed how the precipitation at

cement grain surfaces leads to spatial gradients in density that develop over time but depend

on the features of the C-S-H interactions. With the ES interaction, we discovered a perco-

lating cluster that forms around φ = 15% with reduced density and stress gradients, as

well as network anisotropy, relative to the LS interaction. Calculations of pore size and

diffusion in the pores demonstrated that these differences in the gel morphology translated

into coarsening pores and an increase in pore tortuosity along the gradient direction for the

LS system. Finally, we computed specific surface area and scattering intensity to make a

connection to experimental methods of characterizing cement microstructure.

The heterogeneous growth of C-S-H nanoparticles clearly has an effect on the mor-

phology of the gel that is formed, and this effect of spatial gradients in the C-S-H precipi-

tation is controlled by the features of the interaction potential between the C-S-H nanopar-

ticles. The non-contact repulsion that is present in early stages of hydration due to electro-

statics plays a crucial role in the formation of a percolated and stress-bearing network with
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limited anisotropy. It also helps to prevent the formation of large pores due to coarsening,

while maintaining diffusivity in the pores. These features are necessary to the continuing

hydration of cement grains and the formation of a connected solid structure. As the inter-

actions evolve over time, the presence of the cement grain surfaces can drive the formation

of spatial gradients in C-S-H density as well as differences in local packing and density—

consistent with the two distinct morphological phases of C-S-H observed in the literature

[32, 139].

Our study provides further support to the idea proposed by Ioannidou et al: the nat-

ural time-evolution of the interaction between C-S-H nanoparticles is crucial to attaining

the final mechanical strength through a complex tuning of the gel morphology [64]. Not

only are the differences in the interactions maintained under spatial gradients of C-S-H

precipitation, they are enhanced. And in the context of heterogeneous C-S-H nucleation,

the features of the early stage interactions are required to explain how cement setting can

be such a complex but robust process. These discoveries give insight into how the growth

of nanoscale components builds up the overall microstructure of cement hydrates and how

it depends on the interactions between the nanoparticles. Such insight is an important step

towards understanding how an alternative cementitious material could behave through the

changes in chemistry and thus the effective interactions.

One consequence of this work is that the effective interactions between C-S-H nanopar-

ticles are seen to strongly affect the growth and gelation of C-S-H. However, as I discussed

in the Sec. 1.3, those interactions clearly depend on the cement chemistry, yet it is has

remained unclear what specific ingredients control the interactions and lead to the evolving

cohesion during hydration. While it is understood that the electrostatics of Calcium ions

progressively confined between developing C-S-H surfaces is at the core of the problem,

existing theories do not apply in conditions relevant to cement, i.e. high surface charges and

multivalent ions. In my thesis work, I have developed a quantitative approach, again based
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on numerical simulations, to understand the emergence of the cohesion between C-S-H

nanoparticles during cement hydration. The next two chapters are dedicated to this work,

in particular by setting a comparison to the PM approach described in Ch. 1. I will start by

discussing the need for a more detailed description of the solvent, water, and the model I

decided to work with.
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CHAPTER 3

A SEMI-ATOMISTIC MODEL FOR ELECTROSTATICS IN CONFINED WATER

In the previous chapter, I described the mesoscale C-S-H gel and pore networks. These

networks show gradients and anisotropies due to the heterogeneous growth of C-S-H from

cement grain surfaces, but these features are highly dependent on the effective interac-

tions between the C-S-H nanoparticles. These interactions were observed to depend on the

cement chemistry (Fig. 1.3), yet it has remained unclear how specific ingredients (ion speci-

ficity/confinement, surface charge) control the interactions and lead to the strong cohesion

at the end of hydration. PM simulations, going beyond mean field theories, demonstrate

that attraction can arise between C-S-H-like charged surfaces due to ion-ion correlations.

However, the predicted cohesive strength for C-S-H in the hardened cement paste is mul-

tiple orders of magnitude too low to compare to atomistic simulations [89] or experiments

[93, 148] in the hardened paste. This discrepancy is too large to be explained by small

details: important physical effects are missed by the PM description. In this chapter, I will

explain the model I decided to work with, starting from the need to capture water restruc-

turing and its effect on ions in confinement.

3.1 PROBLEMATIC TREATMENT OF CONFINED WATER

Water is, in fact, a highly complex fluid, that is notoriously challenging to model [98].

Water molecules have a high dipole moment (1.855 Debye) in isolation, and are polarizable

so that the condensed phase is observed to have moments in the range of 2.4 to 2.6 D [53].
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Due to the partial charges on H and O atoms, liquid water readily forms hydrogen bond

networks, and the connectivity of these networks lies well above the percolation threshold

[124]. However, despite the bonding energy being greater than the thermal energy, the

diffusivity of water is comparable to that of unconnected simple liquids [124]. In addi-

tion to short-ranged ordering from hydrogen bonds, there is a long-ranged contribution to

the forces between water molecules from their dipole moments. Dipolar fluids have been

demonstrated to exhibit structure at all length scales [75].

The situation is further complicated by the confinement, as water behavior is strongly

affected by confinement, including modification of density and dielectric properties [9,

123, 125]. Due to geometric constraints, water structure is greatly altered, leading to water

layering being observed in simulations for a wide range of systems, including atomistic

simulations of C-S-H [38, 48, 89, 90]. This means that water density differs from the bulk

and depends on the level of confinement. The modification of density also affects dynamics

and phase behavior.

Of particular relevance is the demonstration of a drastically reduced (and locally

varying) dielectric constant in simulations of water confined by charged surfaces [114].

There is also experimental evidence that the water restructuring near an AFM tip reduces

the dielectric constant of water [140]. Interestingly, the topological constraint induced by

the mere presence of a surface, regardless of surface properties, is found to slow water

dynamics in experiments [100]—suggesting the key here is the water behavior rather than

the surface properties. Could this change in water properties be the source of the large

discrepancy between the PM, with water treated implicitly with a bulk dielectric constant,

and atomistic simulations or experimental measurements?
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3.2 EXPLICIT SOLVENT WITH CLAYS

Seeking to answer this question, we have drawn inspiration from the PhD thesis of Benoit

Carrier, in which he tackles the same question in the context of clays [24]. Like C-S-H,

wet clays are made up of charged particles in solution with counter-ions. Clay particles are

much coarser, up to microns in size, the types of ions are different, and the cohesive strength

does not compare to hardened C-S-H. Nonetheless, the underlying physical question about

the microscopic mechanisms for electrostatic cohesion is the same.

In the thesis, Carrier does both PM and atomistic simulations of clays, and he goes

on to introduce an explicit solvent primitive model (ESPM) in which water molecules are

included as soft spheres with a point dipole [24]. By explicitly including the solvent, the

dielectric properties can arise from the fluctuations of these dipoles rather than being an

imposed constant as in the PM. This allows for the dielectric “constant" to actually be a

function of the confinement and ion concentration, as it is in atomistic simulations. It also

captures some of the water structuring due to confinement—though notably, the lack of a

quadrapole moment means there is no hydrogen bonding or tetrahedral structure.

This model is investigated as an intermediate between the PM and fully atomistic simu-

lations, ideally capturing important physics the PM misses without increasing the computa-

tional cost too much. The inclusion of water was found to dramatically alter the computed

forces, qualitatively as well as quantitatively. Carrier was able to see cases of attraction

between clay surfaces where the usual PM predicted repulsion (Fig. 3.1), indicating that

the solvent plays a role in creating the cohesion [24].
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Figure 3.1: Explicit solvent model in clays. ESPM simulations (left) show attraction
between clay surfaces in cases where the PM (right) predicts only repulsion [24]. Two
types of clay are considered, in solution with Sodium counter-ions, and ESPM simulations
show electrostatic attraction at certain distances for both clays.

This demonstration of the effect that explicitly including the solvent has for clays is

a strong indication that it is also important for modeling the net interaction between C-S-

H surfaces. But what about the explicit solvent is so important in correctly predicting the

forces? If we can understand this mechanism, it will make it much clearer how the changing

conditions during cement hydration play into the development of C-S-H cohesion.

3.3 SEMI-ATOMISTIC APPROACH FOR CALCIUM-SILICATE-HYDRATES

We need a realistic model that can capture the complexities of the water behavior but still

allow one to explore different conditions (surface charge density, ion type and concentra-

tion, etc.). In the next chapter, I will discuss my results, including the overall interaction

between C-S-H particles, the microscopic mechanism that I find is responsible for that, and

how that can arise during cement setting. I will also talk about the comparison with ana-

lytic theory developed by our collaborators. But before all that, I will explain the model we

developed and its parameters in detail.
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3.3.1 THE INGREDIENTS

Building on the framework of the PM, and Carrier’s extension with an explicit solvent, I

start with a system that is 2D periodic and confined by charged surfaces in the z direction.

Ions are included explicitly as point charges in a soft sphere. Water is also treated as an

explicit solvent.

Since the first computer simulation of liquid water, by Barker and Watts in 1969, there

have been over a hundred different proposed water models [98]. The strategies employed

have ranged from empirical models using effective point charges to a focus on polarization

and many-body effects. The extensive hydrogen bonding network of water is dependent

on rather subtle details of its quadrupole moment (and the balance with short-range, steric

repulsion), but it also has a high dielectric constant and long-ranged order associated with

its strong dipole moment [132]. As the behavior depends both on the magnitude and relative

values of the moments, improving the model in regards to one property can make it worse

for others [39].

While it may not be possible to capture all features of water behavior, Carrier’s work

[24] suggests that even a simple water model could be enough to capture several important

effects that implicit solvent models like the PM missed. The SPC/E model [11] is widely

used due to its ability to capture several features of water structure [87] with computational

efficiency. In order to make direct quantitative comparisons with the analytical predictions,

a simpler dipolar model (similar to what is used by Carrier [24]) was also used in some

cases. This model consisted of a soft sphere with an embedded point dipole.

To account for the finite size and dispersion interactions of ions, water, and the walls

(C-S-H surfaces), I used a Lennard-Jones potential (LJ):

ULJ(r) = 4ε
[(σ

r

)12
−
(σ

r

)6
]
. (3.1)
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In the SPC/E model, there is one LJ site per water molecule situated at the Oxygen

atom, and I use the same scheme for the dipolar water model. The LJ parameters for the

ions are taken from Cygan et al [34] (more on this in the next section). The specific values

used for the LJ d and ε are: d = 2.87Å and ε = 0.1kcal/mol for Ca-Ca, d = 3.166Å and

ε = 0.155kcal/mol for water-water, and d = 3.018Å and ε = 0.127kcal/mol for Ca-water.

In addition, the walls (C-S-H surfaces) have a similar potential that just varies with the

z distance perpendicular to the surface:

Uwall(z) = 4ε

[(
σ
z

)12

−
(

σ
z

)6
]
. (3.2)

The wall LJ parameters are the same as those of water (corresponding to Oxygen atoms).

The final ingredient is the Coulomb forces. Calcium ions have a charge of +2e. Water

is overall neutral, but it has a very strong dipole and quadrapole moment: features that

strongly affect its properties as a solvent. The SPC/E model implements this via partial

charges associated with the O and H atoms in fixed (relative to each other) positions. The

dipolar model I implement is simpler and includes only a point dipole with a moment

of 1.8 Debye. This clearly will not reproduce the more complex tetrahedral structure of

water, which the SPC/E model manages to do, and the main relevance is to enable compar-

isons with the analytical predictions. Finally, the walls are considered to have equal surface

charge densities, and since they are infinite planes, this produces no net electric field.

3.3.2 DISPERSION INTERACTIONS

It is important to correctly account for the dispersion forces between ions, water, and C-S-H

surfaces. To do this, I use a LJ potential. ClayFF is a force field that parameterizes LJ terms

for the various species of atoms that are of interest when studying clays [34], and there is a

lot of overlap for C-S-H.
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As a check, I computed the expected interaction term between Oxygen atoms (such as

those in water) via the Pn-Traz method of Pellenq and Nicholson [104]. Two spherically

symmetric atoms, separated by a distance R, will exhibit long-range dispersion interac-

tions due to correlations in charge fluctuations, and generally this interaction will have the

following form:

udisp(R) =−{
C6

R6 +
C8

R8 +
C10

R10 + ...} (3.3)

As a first estimate, I will be focusing on the R6 term (which has the largest contribution).

This term represents interactions between two instantaneous dipoles. The coefficient is

given by [104]

C6 =
3
π

∫
∞

0
αA(iω)αB(iω)dω (3.4)

where α is the dipole polarizability for each of the atoms A and B. These polarizabilities

can be expressed in terms of the energies and dipole moments associated with ground state

to excited state transitions as

α(iω) =
∞

∑
n=1

fn

ε2
n +(iω)2 (3.5)

where εn is the energy of the nth state transition and fn is a quantity associated with the

energy, dipole moment, and probability of such a transition. It is defined as [137]

fn =
8π
3

εn|〈ψ0|∑
j

r jY 0
1 (cosθ j)|ψn〉|2 (3.6)

where the sum is over the electrons and Y is the spherical harmonic function. Note that this

is defined in atomic units, and there is an implicit factor of e2. The squared term can be

understood as the square of the dipole moment of the nth state weighted by the probability

of that transition.
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In this method of computing dispersion interactions, the main simplification is the use of

Padé approximation, a mathematical technique used to estimate a function of a single vari-

able (analogous to a truncated Taylor series). This gives the following single term approxi-

mant for the dynamic polarizability:

α(iω) =
α(0)η2

η2 +ω2 (3.7)

where η is an energy parameter that will be discussed in greater detail later. Combining the

above approximation with the identity

2
π

∫
∞

0

ab
(a2 + x2)(b2 + x2)

dx =
1

a+b
(3.8)

allows us to simplify equation 6 to:

C6 =
3
2

ηAηB

ηA +ηB αA(0)αB(0) (3.9)

This formulation only depends on the static polarizability of the two atoms and a suitable

choice for the energy parameter η .

η can be chosen to find upper or lower bounds for α(iω) [137]. Here we choose η =√
S(0)
α(0) , where S(k) = ∑n fnεn, which gives us an upper bound. The main advantage here is

that this sum can be related to the number of electrons in an atom, allowing us to estimate

this for a general species. Specifically, this sum is equal to the effective number of electrons,

Ne f f , which is related to the number of outer shell electrons, N.

Ne f f = aN2 +bN + c (3.10)

The values of a,b,c depend on the number of electron shells in the atom, and specific

values are tabulated in the paper of Pellenq and Nicholson [104]. This choice is found to

give results that are about 10% too high for C6.

Having made the above approximations and chosen the parameters, the expression for

C6 becomes very simple. For two atoms of the same type, equation 11 reduces to:

C6 =
3
4

√
Ne f f α(0)3 (3.11)
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Our interest is in the interaction between C-S-H and water. For water, we will focus

on the dispersion interactions of the Oxygen atom as is commonly done in water models.

C-S-H is a more complex molecule, but the outermost atoms are Oxygen. As a first approx-

imation, we will compute the Oxygen-Oxygen interaction.

The polarizability and effective number of electrons for Oxygen depend on the molec-

ular structure within which it exists. For parameters corresponding to SiO2 and MgO, C6 is

found to be 38.8248 and 74.2078 respectively.

LJ parameters for the particles are taken from ClayFF [34]. For Ca-Ca: d = 2.87Å and

ε = 0.1 kcal/mol, for water-water: d = 3.166Å and ε = 0.1554 kcal/mol, and for Ca-water:

d = 3.018Å and ε = 0.127 kcal/mol [34]. In comparison to the calculated coefficients, the

LJ parameters we have from ClayFF give C6 = 45.4306. As this falls between the two

computed values, it seems like this force field does a good job representing the dispersion

interactions.

3.3.3 COULOMB FORCES AND EWALD SUMMATION

Since Coulomb forces are long-ranged, simply having a force cutoff would lead to large

errors in the calculation, and the sum of Coulomb forces from all periodic images of the

system is actually only conditionally convergent (i.e. it will only converge for certain sum-

mation geometries). A more efficient and reliable method is the use of Ewald summation

[5, 41]. This is a method for summing the electrostatic forces in Fourier space that con-

verges absolutely. The key feature that enables this is splitting the Coulomb interaction

into two terms:

q2

r
→ q2(

f (r)
r

+
1− f (r)

r
), (3.12)
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where f (r) is chosen so that f (r)
r is short-ranged and can be computed directly up to a

cutoff distance, while 1− f (r)
r has a negligible Fourier transform for large values of k. The

common choice is to use the complimentary error function:

f (r) = er f c(r) =
2√
π

∫
∞

r
e−t2

dt. (3.13)

By splitting the potential in this way, it is possible to truncate the sums in r and k. This

introduces an error in the energy that scales as M2

V (εS)
, where M is the net dipole moment

in one periodic image, V is the volume of that image, and εS is the dielectric constant of

the surrounding medium [131]. By taking our "infinite" system to be surrounded by a con-

ductor, this term vanishes and we recover the correct energy. In other words, the Ewald sum

gives the result for summing the Coulomb forces from a large sphere of periodic images in

spherical coordinates then taking the material outside this sphere to be a conductor.

Although this method has been derived for a 3D periodic system, it can be applied to

a 2D periodic slab geometry (where one dimension, which we’ll refer to as z, is finite).

This is done by adding a large vacuum space in the z direction and then making the system

periodic. Effectively, we produce infinite slabs that are separated by large vacuum spaces.

Recall that the true Coulomb sum depends on the order of summation, so the usual

Ewald sum is exact only for one summation geometry and requires a correction for other

geometries. Yeh and Berkowitz showed that treating the slab system as 3D periodic, with

some vacuum space inserted between slabs, is accurate given the addition of a geometry-

related correction term to the energy [154]. For the slab geometry, this term is:

E(M,slab) =
2π
V

M2
z (3.14)

where Mz is the z component of the total dipole moment of the simulation cell [131]. Adding

this correction term to the standard 3D Ewald summation allows accurate computation of

the sums—while without it, the convergence to 2D results remained unsatisfactory even
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when the vacuum space is significantly larger than the simulation cell [154]. This term has

a contribution to the z component of the force equal to

Fz,i =−
δ

δ zi
E(M,slab) =−4πqi

V
Mz (3.15)

3.3.4 WATER DENSITY

As mentioned already, water in confined geometries (especially in the presence of charges)

can have a density that is different from bulk water. To select the number of water molecules

for the simulations, I first performed Grand Canonical Monte Carlo based on the chem-

ical potential of bulk water (room temperature, density). Simulations in bulk conditions

showed that chemical potentials of µ =−2 kcal/mol and µ =−8.8 kcal/mol gave the cor-

rect water density for the dipolar and SPC/E models respectively. GCMC simulations with

these values can be used to produce the water density profile under confinement.

In general, the chemical potential represents the free energy change due to adding a

particle. It can be broken down as:

µ = µideal +µexcess (3.16)

The ideal gas contribution is due to the entropy associated with confining the particles

in a certain volume: kBT lnρΛ3, where ρ is the number density and Λ is the thermal De

Broglie wavelength. The excess term is the result of water interactions with other water

molecules, ions, and the walls.

In the Grand Canonical ensemble, the probability of states with N +1 particles relative

to N particles must be given by:

pN+1

pN
=

V
Λ3(N +1)

e−β (µ−∆U) (3.17)

where β = kBT and ∆U is the total change of interaction energy due to the inclusion of

an additional particle. This can be maintained using the Metropolis method by attempting
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insertions/deletions with equal probability, and accepting them with the following proba-

bilities [5]:

pins = min[1,
V

Λ3(N+1)
eβ (µ−∆U)] (3.18)

pdel = min[1,
Λ3N

V
e−β (µ−∆U)] (3.19)

3.3.5 DIELECTRIC PROPERTIES

The dielectric response of a material can be quite complex at the atomic level. While the

dielectric constant εw is a macroscopic quantity, it arises from this complex microscopic

behavior. Even ignoring how the confinement in our system would change the macroscopic

εw, trying to use this εw for interactions at the nanoscale (as in the PM) has a host of prob-

lems. With numerous charges enclosed in a small volume, the polarization of the solvent

would depend non-trivially on the arrangement of all the ions and solvent molecules, so

taking it to behave the same as in the macroscopic material exposed to an external field is

a very strong assumption.

Explicit inclusion of the solvent allows one to directly incorporate this as a microscopic

phenomenon. Unfortunately, this is a feature that is actually quite difficult to capture cor-

rectly, and many water models that give otherwise similar results produce drastically dif-

ferent values for the dielectric constant. Sprik et al compared several different models and

found that the value of the dipole moment played a large role in the dielectric constant,

even for models that were otherwise very similar [132]. Other studies have found that the

higher order terms in the electrostatic interactions mainly play a role in the local structuring

of a fluid, while the dipole moment is longer-ranged and strongly impacts the dielectric

properties [1]. Achieving a perfect balance has proven to be difficult as the adjustment of

parameters to improve accuracy of one can inadvertently reduce the accuracy of the other

[39].
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In MD simulations, the standard way to compute εw is from the total dipole moment,

M [52]. εw can be related to M through the fluctuation-dissipation theorem. Specifically,

εw = 1+χ , where χ is the electric susceptibility, and the fluctuations in M are related to its

dissipation through χ . For an isotropic system < M >= 0 and the variance of M is simply

< M2 >, so we get:

χ =
1

ε0V kBT
< M2

x +M2
y +M2

z >

3
(3.20)

In real water, an external electric field would both align dipole moments and induce

polarizations, but our model has no mechanism for that kind of polarization. Similarly,

induced polarization causes the dipole moment of real water (measurements range from

2.4− 2.6 Debye) to differ from the value associated with an isolated molecule (1.855

Debye) [53]. We selected the dipole moment in our dipolar water model by matching the

dielectric constant of real water: which worked out to 1.8 Debye. With the SPC/E model,

the dipole moment is 2.35 Debye, which is closer to experimentally reported values in

liquid water ranging from 2.4−2.6 Debye [53]. However, the SPC/E model gives a slightly

lower bulk dielectric constant of εw ≈ 71 instead of 80 [136].

3.4 SIMULATIONS

Having developed a detailed and realistic semi-atomistic model for water and ions confined

by charged surfaces, it can now be applied to investigate the physical phenomena under-

lying like-charge attraction. In the next chapter I will delve into how this arises in C-S-H

during cement hydration. First, I will describe how I perform simulations using this model

and, in Sec. 3.5, how this alters water properties compared to the bulk liquid and other

studies of water in confinement.

Simulations are done using LAMMPS [108]. I consider a slab geometry which is finite

in the z direction and periodic in x and y (the charged surfaces being at z = 0 and z =
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D). 64 Calcium ions are confined in this system. For a surface charge density of σ =

3e−/nm2, the xy size is fixed by the electroneutrality condition at Lx = Ly = 46.2Å. This

value of σ corresponds to C-S-H in the hardened cement paste, but early during hydration

the hydrates have a less defined form and can have lower surface charges. While there is

not a quantitative timeline of the surface charge, I will consider the qualitative effects it has

by varying σ . For each value of σ and the surface separation D, independent simulations

are performed.

The procedure consists of two steps: 1) insert water to reach equilibrium density

and 2) sample the equilibrium states. The first step involves GCMC (Grand Canonical

Monte Carlo) done in conjunction with some MD (Molecular Dynamics) steps so that the

system can quickly explore various configurations. Specifically, 1000 GCMC exchanges

are attempted every 1000 MD time steps (each time step is 1 fs). This is continued until

water density reaches a plateau, and this is taken as the equilibrium water density for

that system. I found 3 ∗ 106 MD steps, or 3ns to be a sufficient amount of simulation

time to reasonably ascertain the densities. The second stage consists of pure MD in an

NVT ensemble. During this process, macroscopic and microscopic data is outputted, and a

variety of statistical tools are used to examine both the overall interaction pressure and the

microscopic mechanisms that give rise to it.

3.5 WATER PROPERTIES IN CONFINEMENT

One motivation for using explicit water is the large modification of water properties under

confinement, and it is reassuring to find that the water properties I observe are consistent

with studies on confined water in other contexts [9, 48, 114, 123, 125, 155]. In this section, I

present results for the water properties in confinement by surfaces with charge density σ =

3e−/nm2, which is on the order of C-S-H in the hardened paste, using both the SPC/E and
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Figure 3.2: Water density in confinement. Left: Water density from GCMC simulations
as a function of confinement. Both models give density oscillations due to water layering.
Right: An example of the local density profiles shows the clear layering effect of the water
near either surface. The effect becomes less pronounced in the middle, far from either wall.
In this regime, the different bulk behaviors of the two water models begin to appear, and
we see different structures for dipoles and SPC.

dipolar model, to demonstrate that these semi-atomistic models capture important physical

effects that implicit water models cannot. The most clear effect is layering of the water in

confinement, for both dipolar and SPC/E water models, and this leads to large oscillations

of the water density as a function of surface separation (Fig. 3.2). This sort of layering has

been seen in simulations for a wide range of systems, including atomistic simulations of

C-S-H [38, 48, 89, 90]. The layering has also been associated with an oscillatory solvation

force measured between surfaces at very small separations [67].

In addition to layering, we see a clear restructuring of the water into hydration shells

around the Calcium ions. The ions themselves stay close to the charged surfaces, and the

water forms hedgehog like structures around the ions. All this limits the orientational

mobility of the water, resulting in a decreased effective dielectric constant in confine-

ment (Fig. 3.3). A similar effect was seen in simulations of cylindrical pores when surface

66



Figure 3.3: The effective dielectric constant of the confined water. There is a clear reduc-
tion in dielectric properties due to water restructuring under confinement and around ions.

charged density was increased [114]. There is also experimental evidence that the water

restructuring near an AFM tip (tested by modifying tip material) reduces the dielectric

constant of water [140].

These results demonstrate that there are important physical effects that implicit water

models miss which my simulations with semi-atomistic models are able to capture. We

know from Carrier’s PhD thesis work [24] that the change in solvent properties can strongly

affect the net forces in clays. The next questions are what effect they have for C-S-H and by

which microscopic mechanisms the solvent affects the cohesion in the developing material

during cement hydration.

3.6 SUMMARY

In this chapter I have discussed the model and simulation approach I have developed to

analyze how nanoscale forces between C-S-H particles emerge during hydration. I have
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built on previous work carried out for clays and formulated a semi-atomistic approach that

allows for an explicit description of confined water in the presence of divalent ions. In

the next chapter, I will discuss the novel insight obtained, through this approach, into how

nanoscale cohesion develops during cement hydration
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CHAPTER 4

THE NANOSCALE ORIGIN OF CEMENT COHESION

Cohesive forces between charged C-S-H nanoparticles are the foundation of cement-based

construction. Net attractive interactions between equally charged surfaces in ionic solutions

are a widespread phenomenon in colloidal materials or biological systems [24, 66, 67, 70,

95, 116, 134]. As discussed in Ch. 1, primitive model (PM) simulations have shown that

net attractive interactions can emerge from correlations of the ions positions in a dielectric

continuum that has the properties of bulk water [36, 73, 101, 102, 105]. The corresponding

cohesive strength is nevertheless always orders of magnitude too low when compared with

experimental measurements of the modulus of the hardened paste [93, 148] and atomistic

simulations of hardened C-S-H [89].

In the previous chapter, I discussed how the PM and analytical treatments of this elec-

trostatics problem do not adequately account for the effects of the solvent. Water properties

in confinement are drastically different compared to the pure bulk liquid, and the semi-

atomistic model we developed can capture those differences. In this chapter, I use that

model to investigate the origin of the cohesion of cement hydrates and how such cohesion

could arise during hydration. I then analyze the spatial and dynamic correlations to unravel

the microscopic mechanisms behind that cohesion. Finally, I discuss the comparison with

an analytical theory for strongly coupled systems.
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4.1 SIMULATION METHODS AND PARAMETERS

In order to investigate the origin of electrostatic cohesion between C-S-H nanoparticles, I

will be using the semi-atomistic model described in detail in Ch. 3. In this model, SPC/E

water [11] and Calcium ions (LJ spheres with point charge) are confined by uniformly

charged planar surfaces. Fixing the surface separation D and the ion number NCa = 64,

the number of water molecules is determined by a Grand Canonical Monte Carlo (GCMC)

process to equilibrate the confined simulation volume with a reservoir of water at room

temperature and pressure. The GCMC is run until the water density stops changing and its

equilibrium value is reached. The GCMC process alone is very slow to converge to the final

density as it only considers single molecule moves. To speed up the convergence, we com-

bine this with Molecular Dynamics (MD), with 1000 GCMC exchanges attempted every

1000 MD steps with a time step of 1fs. With this process, the equilibrium density in con-

finement is found within 3 ∗ 106 MD steps. In certain larger simulations, the convergence

was slow due to the larger number of water molecules. In this situation, an initial configu-

ration with water molecules at bulk density (ρ = 1g/cm3) significantly reduced the GCMC

simulation time required to converge to the equilibrium density.

After this process, MD in an NVT ensemble, with N fixed by the GCMC equilibration

and T = 298K, is performed to sample the equilibrium states and measure microscopic

variables. Surface separation is varied to measure the pressure and microscopic quantities

as a function of D. For each value of D, an independent simulation is performed, including

both the GCMC equilibration and MD sampling. As seen in Fig. 3.2, the water density is

highly dependent on D, so the entire process must be repeated for each simulation.

From the particle trajectories, the pressure and microscopic correlations can be com-

puted. The pressure is calculated as the time average of the total force exerted on one of

the C-S-H surfaces, which fluctuates around a mean value in equilibrium. To investigate

70



the microscopic origins of this force, we also study the spatial and dynamical correlations

that arise in the ions and water. As discussed in Ch. 1, there are theoretical predictions that

ions have strongly correlated positions and may even form 2D crystals [119]. To quantify

the extent to which this holds, we calculate the pair correlation function g(r) of ions in the

xy plane, i.e. parallel to the C-S-H surfaces, defined as:

g(r) =
LxLy

2πr∆rN2
ion
〈∑

i
∑
j 6=i

H (∆r−
∣∣r− ri j

∣∣)〉 (4.1)

where Lx = Ly are the simulation dimensions,ri j is the distance between the two ions in the

xy plane, ∆r is a binning distance, and H is the Heavyside function. Later, this function

is also calculated for specific groups of ions, determined by their z position, which simply

involves modifying Nion and the ∑ bounds appropriately.

In addition to static spatial correlations, significant dynamical correlations also arise.

The have been studied by computing the self-intermediate scattering function [57], which

quantifies the time correlations of ion (or water molecule) displacements. In particular, we

analyzed the dynamics in the direction normal to the surface, z:

Fs(qz, t) =
1
N

〈
N

∑
j=1

eiqz(z j(t)−z j(0))

〉
(4.2)

where the qz values are chosen according to the system dimension D. The qz value sets

the length scale of displacements that contribute most to Fs(qz, t), and due to boundary

conditions the lowest allowable value is qz = 2π/D. We consider values up to qz = 10Å
−1

,

corresponding to sub-angstrom length scales. Once again, it can be helpful (and straight-

forward in simulation) to separate this into contributions from different groups of ions or

water molecules, and this requires modifying the N and the bounds of the ∑.

All these simulations and calculations are performed to investigate the microscopic

mechanisms responsible for cohesion. One of main goals is to explain the discrepancy

between the PM [105] and atomistic simulations [89] or experimental measurements [93,
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148] for the cohesion of hardened C-S-H. However, we are also interested in the time evo-

lution of that cohesion. Experimental measurements [107] show that the changing cement

chemistry affects the forces between C-S-H surfaces, and my mesoscale simulations in

Ch. 2 have demonstrated how that change affects the development of the C-S-H gel. Sim-

ulations show that the pH of the cement solution, which rises during hydration, strongly

affects the C-S-H surface charge density [77]. In order to explain the emergence of the

cohesion starting from the early stages of hydration, we investigated the pressure and

the microscopic correlations for a range of surface charge densities, from σ = 1e/nm2

to σ = 3e/nm2. σ = 1e/nm2 is comparable to surface charge densities typical of clays,

and in general, low surface charges could be due to the partial development of the struc-

ture typical of the hardened paste. For each set of simulations, Nion = 64 was fixed and the

simulation bounds Lx and Ly were adjusted accordingly.

4.2 DEVIATION FROM PRIMITIVE MODEL

At lower σ , which corresponds to early cement hydration times, the electrostatic coupling

is relatively weak, and one might expect the PM or DLVO pictures to work reasonably

well. However, earlier work with clays has already indicated this is not necessarily true,

as explicit solvent models can predict attraction where the implicit water PM fails to [24].

Indeed, I find that at σ = 1e−/nm2, a surface charge comparable to clays, the inclusion of

explicit water leads to a net attraction (Fig. 4.1a) that is not reproducible in the PM. This

effect arises from strong and long-ranged correlations in ion positions that are not present

in the PM. Like in the PM, the ions are strongly localized in the z direction due to the

confinement, but the spatial arrangement in the xy plane is significantly altered. Fig. 4.1b

is a plot of the ion pair correlation g(r) (Eq. 4.1). The g(r) shows clear peaks that persist to

large distances with SPC/E water. On the other hand, the bare ion PM has no clear peaks,
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indicating that their spatial arrangement is close to uncorrelated. A simplistic attempt to

account for the hydration shells of ions by considering a larger effective ion size does

change the microscopic behavior a bit, reproducing the first g(r) peak, but is insufficient to

fully capture the long-range effects of water.

Under confinement, the ion hydration shells differ significantly from those of free ions.

At relatively larger separations of D > 20Å, hydration shells are limited to at most 8 water

molecules (Fig. 4.1c), consistent with the average 7.9 calculated for Calcium ions in bulk

SPC/E water [76]. As D is decreased, these shells do not immediately change, indicating

that a larger fraction of the total water is bound in the hydration shells, with presumably lim-

ited mobility and ability to function as a dielectric. Further confinement affects the hydra-

tion shells—by D = 8Å the surfaces are squeezing the ions into a single layer and pressing

against their hydration shells (see simulation snapshots in Fig. 4.1d). Hence reducing D

from 9Å to 7Å requires overcoming a repulsive barrier that results in a non-monotonic

dependence of the pressure on surface separation D. This feature of a repulsive shoulder

in the interactions at early times is indeed consistent with the AFM experiments [107] dis-

cussed in Ch. 1. In addition, the simulations discussed in Ch. 2 predict that it plays an

important role in the early stage of hydration. There have been many hypotheses as to what

may produce this repulsion, and my results suggest a novel mechanism as the source. Note

that here I considered only one type of ion, but with the addition of salts these hydrated

structures could change and this mechanism would lead to repulsion at different D.

4.3 INCREASING SURFACE CHARGE

As σ is increased in the simulations, the ions become increasingly localized in the z direc-

tion. At σ = 3e−/nm2, ions become strongly confined to layers near the walls and pro-

gressively squeezed with their hydration shells against the walls (as seen from ion density
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Figure 4.1: Semi-atomistic approach deviates from PM even at low σ . In (a) we show
the net pressure between the C-S-H surfaces. With explicit water, we obtain negative
pressures—i.e. net attraction—that cannot be found with the PM approach, even consid-
ering an increased effective ion size due to hydration. This stems from much strong ion-ion
correlations seen in (b), where we plot the pair correlation in the xy plane at D = 8Å.
Using the hydrated ion size in the PM creates a first peak that is similar to what we get
with explicit water, but it cannot replicate the long-ranged correlations. The water behavior
is more complex than that and strongly depends on confinement. Looking at the hydra-
tion shell size (c) we see that, at large separations, we observe nearly full hydration shells
of 7-8 water molecules. As D is decreased, these shells make up a larger portion of the
system water, which affects its ability to screen electrostatic interactions. When confined
to D = 8Å, the ions coalesce into a single layer (d) and these shells get pressed by walls
resulting in the overall repulsion seen at this separation.

74



Figure 4.2: Ion density profiles and hydration shells. Plots of ion density profiles at
(a) D = 20Å and (b) D = 8Å. By increasing surface charge density, we see an increasing
localization of ions in the z direction. For σ = 2e−/nm2 at large D (c), there is a split
between wall ions with a hemispherical hydration shell of 5-6 water molecules and shifted
ions with a nearly full hydration shell of 7-8 water molecules. At lower D or higher σ ,
the shifted ions are suppressed and all ions are close to the wall, in stark contrast to the
situation at σ = 1e−/nm2 and D = 8Å where all the ions coalesce into a single layer.

profiles in Fig. 4.2a,b). Because of that, they are unable to form full hydration shells. At

σ = 2e−/nm2 and D = 20Å, the ion profiles show that there are two peaks, split between

these wall ions with a hemispherical hydration shell of 5-6 water molecules and shifted ions

with a nearly full hydration shell of 7-8 water molecules (Fig. 4.2c shows the hydration

shell populations in simulations with σ = 2e−/nm2). If D is decreased at σ = 2e−/nm2,

the shifted ions are eliminated and there is no splitting of the ion density peaks at D = 8Å,

indicating that this localization is a function of both separation D and surface charge σ .

Finally, for the highest surface charge σ = 3e−/nm2, the ions stay pressed against the

walls even at large separations.

To better understand the implications of these different types of ion layers/hydration

shells, we go back to the pair correlation, plotted in Fig. 4.3. This shows the g(r) separated

into intra- and inter-layer correlations at high confinement (D= 8Å). The layers are defined

by the ion position zi, and the calculation considers either ions in the same layer (intra-layer)
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Figure 4.3: Rising correlations and cohesion with increasing σ . The xy pair correlation
g(r) between ions shows that, as σ increases at fixed separation D = 8Å, ions become
closer together and their positions more correlated. The increasing correlations drive the
overall pressure between the confining walls to become increasingly attractive, reaching
Pmin ≈ 6GPa at σ = 3e−/nm2.

or opposite layers (inter-layer). At σ = 1e−/nm2 where the ions are in a single layer, this

separation is meaningless. However, as σ increases, we see a clear signal that the layers

have distinct but strongly coupled ordering. Despite the separation in z, the xy positions

remain correlated and we observe a staggered square lattice—which is in fact the ground

state configuration for confined charges in the strong coupling regime [119], as discussed

in Ch. 1. Another key observation is that the correlation strength rises significantly with σ ,

and this is coupled to a large increase in the net attractive pressure between the two C-S-H

surfaces. In fact, at σ = 3e−/nm2 we get a pressure minimum of Pmin ≈ 6GPa, which is

consistent with atomistic simulations and nano-indentation experiments for fully hydrated

cement [89, 93, 148].

76



4.4 DYNAMIC CORRELATIONS

In addition to the strong static spatial correlations measured by the g(r) (Fig. 4.3), the

ion-water correlations have significant implications for the dynamics of the system. This

has been quantitatively measured by computing the self intermediate scattering functions

(Eq. 4.2), which give insight into the time dependence of spatial correlations. By varying

q, we determine how the correlations depend on the length scale 2π/q.

At lower surface charges, the ions become highly localized in the z direction, leading to

a plateau in Fs(qz, t) (see Fig. 4.4a). The plateau value depends on qz, indicating that the ion

positions fluctuate a small amount, and are thus uncorrelated at high qz, but do not change

significantly during the simulation time. Due to the formation of hydration shells, this local-

ization extends to the water as well, and we observe long t plateaus in Fs(qz, t) (Fig. 4.4b).

There are, however, specific values of qz which allow enhanced decay in Fs(qz, t), such as

the violet curve corresponding to qz = 2π/5Å
−1

. The enhanced mobility at specific length

scales corresponds to the ability of water in hydration shells to exchange with free water

or attach to a different ion. As only these specific types of motion are allowed, certain

characteristic length scales, associated with these moves, emerge in Fs(qz, t). As separa-

tion increases, and water and ions become progressively less confined, we investigate the

water dynamics for both free and bound water and observe a relatively slower decay in

Fs(qz, t) for water that is bound in hydration shells at time t = 0 (plotted in Fig. 4.4 c and

d). However, while energetically favorable, Calcium hydration shells are highly dynamic

with residence times tres ' 7 ∗ 105fs [76], and we observe significant decay in Fs(qz, t),

even for bound water, indicating that the water does not stay closely attached to the ions,

which are instead highly localized (while Fig. 4.4a is for ions at D = 10Å, it is qualitatively

similar to D = 40Å).
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Figure 4.4: Ion and water dynamics at low σ . Self intermediate scattering function at
σ = 1e−/nm2 in the z direction (normal to surface plane) for ions (a) and water (b) at
D= 10Å and bound (c) and free (d) water at D= 40Å. Color indicates q from q= 2π/D for
black to q = 10Å

−1
for red. Ions are highly localized, and at low separations this strongly

influences the water dynamics. At large separations, bound water, defined as the water in
ion hydration shells at time t = 0, is dynamic and free to move on simulation time scales,
as indicated by Fs(qz, t) approaching 0. Nonetheless, compared to free water, the mobility
is reduced and the decay in Fs(qz, t) is slower, demonstrating that the ion-water interactions
still reduce water mobility.
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Previously, we saw that increasing the surface charge density enhanced the spatial

ordering of the ions (seen in Fig. 4.3). Similarly, enhanced electrostatic forces affect the

dynamics of the hydration shells of the ions. To better understand this, we calculate the

bond correlation, defined as the fraction of ion-water bonds that persist at time t:

Bcorr ≡
1

Nbond

Nbond

∑
i

f bond
i (t)

f bond
i (0)

(4.3)

where f bond
i (t) is either 1 or 0 depending on whether an ion-water pair is bonded or not

at time t. Bcorr decays from 1 at t = 0 over time, but does not reach 0 in the simulation

time considered. Nonetheless, there is a drastic difference in the decay as a function of

surface charge (plotted for D = 20Å in Fig. 4.5). As surface charge density increases, we

observe that water resides in the ion hydration shells for increasing times. Notably, as the

ion charge is unchanged, this difference arises from the collective dynamics of ions and

water due to the decreased average distance between ions. The increased persistence times

of the hydration shells in turn affect the dynamics of both ions and water.

In the most extreme case of σ = 3e−/nm2, which would correspond to the end of

hydration, Fs(qz, t) for the ions (plotted in Fig. 4.6a) shows that there is a first decay in

the correlation function at short times. This corresponds to a ballistic regime for very short

times and distances, with approximately free motion of ions. After this short transient,

Fs(qz, t) shows some oscillations and a flat profile until the end of the simulations, indi-

cating a strong localization. As this effect persists at q = 10Å
−1

, this localization holds

for length scales smaller than an angstrom, and we infer that this signal corresponds to the

localization of the ions near the surfaces, consistent with the density profiles averaged over

time shown in Fig. 4.2. Compared to lower σ , the density peaks are sharper and the plateau

values of Fs(qz, t) higher at σ = 3e−/nm2, demonstrating the increased localization. The

plot shown is for a separation of D = 10Å, but Fs(qz, t) for the ions is very similar up to

D = 40Å—the highest separation simulated.
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Figure 4.5: Ion-water bond correlation. The bond correlation (defined in Eq. 4.3) for dif-
ferent values of σ at D = 20Å. The increasing surface charge density makes ion hydration
shells more persistent and long-lived. Notably, this change is due to the collective dynamics
of ion and water as the individual pairwise interactions between ion and water molecule do
not change.
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Figure 4.6: Ion and water dynamics at high σ . Self intermediate scattering function in the
z direction (normal to surface plane), for ions or water. Color indicates q from q = 2π/D
for black to q = 10Å

−1
for red. (a) Ions in confinement exhibit strong localization near

the surfaces. Notably, this does not change when considering larger separations. (b) Same
quantity for water. Its dynamics are highly coupled to ion dynamics in confinement. At
larger separations, water is split into two populations. The bound water (c) which starts
close to ions follows the ion dynamics, while free water (d) is much more mobile. The
dynamical signature of the ions appearing in this bound water demonstrates the stability of
ion-water structure and its persistence at larger separations.
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Starting at low separation (Fig. 4.6b), we see that the water behavior closely follows

the ion dynamics. The correlations drops off to a lower valued plateau, meaning the local-

ization is not quite as strong as for the ions, but it is clearly there for the water as well.

The oscillations in Fig. 4.6b also mirror those exhibited by the ions, showing how strongly

the water dynamics are coupled to those of the ions. These strong and long-lasting dynam-

ical correlations are evidence of the formation of strongly correlated ion-water assemblies.

While similar structures are observed at lower surface charges, the residence time of water

molecules the hydration shells is much lower, and thus the water correlations are not as

long-lived. Instead, at high σ , the ion-water assemblies persist through the simulation time

and the bound water remains highly localized even for t > 105fs.

The same picture persists even at larger separations (Fig. 4.6c). However, while at lower

separations most of the water is bound to ions, at D = 40Å we observe drastically different

behavior for bound and free water. The bound water, i.e. the water in the ion hydration

shells, behaves exactly the same at D = 40Å as at D = 10Å. This water is strongly coupled

to the ions and they move (or rather do not move) in unison. Instead, the dynamics of

free water (Fig. 4.6d) is substantially uncorrelated from the ions. There is an initial decay

of Fs(qz, t) for high qz (short distances), while for a given diffusion speed, it takes longer

for the displacement of water molecules to become uncorrelated over large distances (low

qz). The fact that there is no localization in the free water, indicates that the behavior of

the bound water is truly determined by electrostatic interactions with ions even at large

separations, when the effects of the confinement are reduced.

4.5 HYDRATED IONS VS n-MERS

At higher surface charges, unlike in a bulk ionic solution, ions are localized very close to the

walls and hydration shells are limited by the confining surfaces. We label these hemispher-
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ical ion-water objects n-mers (n being the number of water molecules surrounding an ion).

The simulation snapshots in Fig. 4.7a show the presence of these n-mers and how the water

arrangement in these structures depends on the level of confinement. For σ = 3e−/nm2

beyond D ' 15Å, we reach a balance of 5-mers and 6-mers, whereas at even smaller D,

the surface limits both the number of water molecules and the space available around the

ions, leading to a prevalence of 3-mers or 4-mers as at the smallest separations D = 6Å

(Fig. 4.7b), consistent with fully atomistic simulations of the hardened paste [106]. While

the specific size of the n-mers depend on the level of confinement, the presence of these

structures is a consistent feature for all separations considered, and their lifetime is longer

than the simulation time (demonstrated by dynamic correlations in Fig. 4.6), implying that

there should be a strong free energy gain driving their formation.

To ground this microscopic understanding in a theoretical background, our collabo-

rators Ivan Palaia and his advisor Emmanuel Trizac computed the free energy of the n-

mers [51, 99]. For these calculations they used a dipolar approximation for the water,

where water “molecules” consist of a spherical particle endowed with a dipole moment.

This removes one degree of freedom per water molecule relative to the SPC/E water, and

this simpler model proves sufficient to provide significant insight. Fig. 4.7 summarizes the

results obtained.

The calculations of the ground state energy un with varying n show that the tendency to

form n-mers can be explained by the significant energetic gain when a dipole adsorbs to an

ion. With non-interacting dipoles, this gain is ∼ 64kBT per water molecule (turquoise line

in Fig. 4.7c). By including dipole-dipole interactions (blue diamonds) and then interactions

with neighboring n-mers (green squares), we observe that the energetic gain decreases with

increasing n, but is still more than an order of magnitude higher than kBT when going

to n = 6. The minimum energy configurations used in the calculations are sketched in

Fig. 4.7c and correspond to the shapes observed in simulations. In the hydration of ions,
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the confinement of water molecules and of their dipoles plays an important role, because it

decreases entropy. Taking into account these entropic effects, and therefore including finite-

temperature in our (so-far) ground-state calculations, one obtains that 5-mers and 6-mers

have the same free energy of formation, within a tolerance ∼ kBT : this explains the right

part of Fig. 4.7b, where these two structures appear in commensurate proportions. Instead,

the free energy gained when a water molecule is adsorbed on a 3-mer to form a 4-mer, or

on a 4-mer to form a 5-mer, is energy-dominated and amounts to negative several tens of

kBT : it is always extremely favorable to adsorb water molecules on ions from the bulk to

increase n, at least up to n = 5. As a consequence, upon increasing the confinement, i.e.

when progressively fewer water molecules are available in the nano-slit, all of them are

adsorbed on ions. This observation allows us to predict the expected fraction of adsorbed

water (Fig. 4.7d) and the peaks of the n-mers distribution (Fig. 4.7b) for n = 3, 4 and 5 by

assuming all available water is bound in n-mers of size up to 5 or 6.

4.6 THE MICROSCOPIC MECHANISM BEHIND COHESION

Putting together all the analysis I have described so far, a coherent picture emerges. At low

σ , hydrated ions exhibit strong spatial correlations (Fig. 4.1b) beyond what is predicted by

the PM. This leads to a net attraction between the charged surfaces. The stability of the

hydrated structures also serve as a barrier against the surfaces approaching each other too

closely, which creates a repulsive shoulder in the net pressure at intermediate distances. As

σ increases during hydration, the fully, or nearly fully, hydrated ions become less favor-

able, especially in strong confinement (Fig. 4.2), and ions separate into layers with strongly

crystalline ordering (Fig. 4.3) that matches theoretical prediction for the ground state con-

figuration of confined charges [119]. These ions are strongly coupled to the water due to

free energy considerations (Fig. 4.7c), leading to a strong modification of ion and water
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Figure 4.7: Formation of n-mers. (a) Simulation snapshots and ion-water coordination as
a function of surface separation. The snapshots show the formation of n-mers with an ion
and its n water hydration shell. (b) A transition from 3-mers at low separation to a balance
of 5- and 6-mers at larger separations is observed. (c) Ground state energy calculations
reveal that there is a large gain for a dipole to adsorb on an ion, explaining the formation of
these effective objects. As n grows larger (to 5 or 6), the additional entropic cost becomes
sufficient to limit this—with a 6-mer being the largest possible semi-hemispherical object.
(d) The fraction of water in n-mers as a function of separation. At small D, almost all water
is bound up in these n-mers, with n limited by water availability. At larger separations, the
balance of energetic gain and entropic cost limits n-mer size. These theoretical arguments
enable quantitative predictions about the water structure which agree with simulations.
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dynamics (Fig. 4.6), especially in confinement. As, at small separations, all water becomes

bound to ions (Fig. 4.7d), there is a drastic decrease in the ability of water to screen elec-

trostatic forces (Fig. 3.3). This means that, instead of fluctuating ions in a dielectric back-

ground (the basis for the PM), we have a highly correlated crystal of n-mers in vacuum.

Considering the large dielectric constant of water (ε ≈ 80), these effects explain the nearly

100-fold increase in cohesive strength that we measure in simulations (Pmin ≈ 6GPa with

explicit SPC/E water instead of Pmin ≈ 60MPa in the PM).

To demonsrate that this mechanism is indeed the origin of the large increase in the

force, Palaia and Trizac estimated the pressure through their analytical theory that is based

on the idea of “correlation holes” around each ion [120] to account for ion-ion correlations,

i.e. by defining a region around each ion in which other ions are prohibited from entering.

This idea is supported by the profile of the pair correlation functions g(r) in Fig. 4.3, which

exhibits strongly depleted short-scale domains, with g ' 0. With this concept in mind,

Palaia and Trizac computed [51, 99] the local effective field κ felt by an n-mer, due to the

presence of all other n-mers, in a staggered arrangement, as the one we obtain for large σ

and low D in Fig. 4.3. They obtained ion density profiles that match the profiles obtained

in simulations, as shown in Fig. 4.8a, b (here we have used only dipolar interactions for

the water to simplify the comparison to the theory, but qualitatively the same behavior is

shown in Fig. 4.2a, b with the SPC/E water model). While the theory slightly overestimates

the peak heights, the agreement with simulations is excellent.

The interactions between n-mers and walls yield the pressure between the two surfaces.

The Coulombic contribution has been estimated as

P(D) = 2πlBσ2kBT

−1+κ(Deff)

1+ eκ(Deff)
Deff
µGC

1− eκ(Deff)
Deff
µGC

 . (4.4)
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Figure 4.8: A new analytic theory for strongly coupled electrostatics. Ion densities can
be computed through the theory of strong coupling and correlation holes, considering an
n-mer as an effective ion and treating appropriately the Lennard-Jones interactions between
wall and n-mers. These computed density profiles (solid line) are compared to the simu-
lated profiles (dashed line) for (a) D = 8Å and (b) D = 12Å. While the theory predicts a
somewhat sharper density peak, there is good agreement between the two. (c) From den-
sity profiles, one can compute the equation of state, through a generalized version of the
contact theorem. This gives a calculated interaction pressure much stronger than earlier
theories for implicit water models and close to what is seen in simulations. Due to adsorp-
tion of water into n-mers at small distances, the effective pressure in the explicit water
simulations approaches what one would get for ions in vacuum (squares, for which the rise
of pressure at distances below 6Å is not visible, since the Lennard Jones contribution has
been discarded for the sake of the argument.
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Supplemented with the Lennard Jones contribution (that becomes relevant only for

D < 6Å), this prediction yields a total pressure in remarkable agreement with the simu-

lations (Fig. 4.8c). While in our approach water molecules are explicitly accounted for,

they are all “captured” by ions. With this major restructuring, their effect on ions is much

less important than in bulk conditions, to such an extent that water contribution to dielectric

screening can be ignored altogether. This is illustrated in Fig. 4.8c, showing that the results

of simulations with SPC/E water and from the theory are close to those of PM simulations

with a vacuum dielectric constant. For the extreme confinement and highest surface charge

considered here, the electrostatic screening ability of water is effectively eliminated. The

resultant pressure profile is remarkably consistent with fully atomistic simulations of hard-

ened cement paste [89]. These results reconcile the description of the fundamental physics

involved in the electrostatics of C-S-H during cement hydration with the characteristics of

the atomistic model proposed by Pellenq et al [106] and with the scenario hypothesized

in [49]. We now have the unified picture for the emergence of nanoscale cohesion during

cement hydration that was missing.

4.7 THE ROLE OF CEMENT CHEMISTRY

For designing new cementitious materials, understanding the consequences of changing

cement chemistry is a necessary step. In addition, there is significant variability in the chem-

ical composition of cement beyond the simples case considered here and in the additives

introduced during mixing. Some of this is designed for specific applications or constrained

by local resources, and in many cases the implications for the material properties are not

understood. The connection between different cement chemistry and its final mechanical

properties is unclear but of great practical importance.
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The changing of surface charge density in my investigation was motivated by the change

in chemical composition of the cement solution as hydration progresses, as changes to pH

or the Ca/Si ratio in the mixture can change the C-S-H surface charge. Those results give us

an idea of how the chemical changes can affect cohesion and propagate up to larger scale

structure and mechanics. However, all of this was done with Calcium ions. Introduction of

different ionic species is common and is an important avenue to explore for novel mate-

rials. The nanoscale structuring of ions and water into n-mers was found to underlie the

cohesion of C-S-H, and thus cement. Modifying the types of ions available would affect

that structuring and cohesion. Until now, there has not been an efficient way to make quan-

titative predictions about how this would change, but the research just discussed provides

the framework to do just that. One major consequence of the importance of n-mers is that

the ion-water interactions are a large factor in the overall cohesion. In particular, the ion

valency controls the strength of the Coulomb attraction between water (with its dipole

moment) and the ions. Real cement mixtures contain various components which introduce

different ions, and novel materials might not be based on Calcium ions at all.

Over the past year, I have worked with Francis Dragulet, an undergraduate student at

Georgetown, on testing the effect of varying ion composition in the scenarios just discussed

in the previous sections. Focusing on valency effects, we have studied the cases of Sodium

(monovalent) and Aluminum (trivalent) ions in comparison to the Calcium (divalent) case

already considered. Following the protocol described in Ch. 3, we have performed simula-

tions for fixed surface charge density σ = 3e−/nm2 while varying the ion type and number

(to maintain electroneutrality). Preliminary data already shows that there is a large change

in pressure, dynamics, and ion-water structuring upon changing the ion type for high con-

finement.

Calculations of pressure (Fig. 4.9) indicate that a higher valency results in a stronger

attraction at D = 6Å. As a higher charge produces stronger electrostatic coupling between
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Figure 4.9: C-S-H cohesion strength with different ions. Calculated pressure between
surfaces with charge density σ = 3e−/nm2 as a function of the counter-ion type and surface
separation. Increasing ion valency leads to stronger attraction at D= 6Å, but it also changes
the entire interaction profile in a non-linear way.

ions and water, this is again consistent with the mechanism based on ion-water restruc-

turing in confinement. Of course, the pressure curves do not tell the full story. Despite the

relative similarity of the curves for Sodium and Calcium, the microscopic dynamics are sur-

prisingly different. By computing the Mean Squared Displacement (MSD), we showed that

unlike Calcium and Aluminum (which form a solid crystal in strong confinement, D = 8Å),

Sodium ions remain highly mobile (Fig. 4.10). However, they are still strongly localized

in planes near the charged surfaces and the MSD normal to the surfaces is flat. Despite the

in-plane mobility, correlations in that motion might explain how cohesion may still arise

for high surface charges—though further investigation is needed.

Beyond the pressure minimum and MSD, interesting features arise that are not simply

explained by the valency. A striking example is the large spike in pressure, to P≈−0.5GPa,
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Figure 4.10: Ion dynamics. The Mean Squared Displacement (MSD) of ions in strong
confinement, D = 8Å. While the higher valency ions, Calcium and Aluminum, form a solid
crystal, Sodium ions remain diffusive. Inset shows MSD in z direction, normal to surface,
in which all ions are strongly confined.

in the Aluminum system at D = 7Å. Both the curves for Sodium and Calcium show oscil-

lations as well, to a smaller degree, that can partially be explained by water layering and

the resulting oscillations in water density, but the local peak at D = 7Å for Aluminium is

more pronounced than similar oscillations in the curves for Calcium and Sodium. Further

investigation revealed that this is associated with a strong energetic preference for certain

types of n-mer: much like the spike at σ = 1e−/nm2, D = 8Å with Calcium (Fig. 4.1).

Analyzing the Aluminum ion hydration shells shows that 5-mers are the most preferred

configuration at almost any D (Fig. 4.11). However, at D = 7Å, the surfaces impinge on the

5-mers, and at D = 6Å there is only enough space for 4-mers to exist. This impingement

is exactly the same as what happened for low surface charge Calcium simulations, and the

associated energetic cost drives up the pressure.
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Figure 4.11: Aluminum hydration shells. The size of Aluminum ion hydration shells in
simulations as a function of pore size (surface separation D). Due to the high ion charge
and small ion size, 5-mers are the most stable configuration at almost all separations. At
D = 7Å, the surfaces impinge on the 5-mers, and at D = 6Å there is not enough space for
the 5th water molecule in the hydration shell.

These simulations with varying ion composition have demonstrated two main results.

First, the role of the ion-water structuring remains central to understanding the emerging

pointing to ion specificity, and the cohesion seems to scale with ion valency. Sodium and

Aluminum ions specifically are very commonly included in cement mixtures, using mate-

rials such as alkali-activated fly ash or slag. These are actively researched avenues for new

cements, and it is important to understand these scenarios.

The second result is that varying ions opens up a much richer space of microscopic

behavior and macroscopic consequences. Given the large differences in water structure

around each type of ion, new types of correlated structures could arise in any real situation

with a mixture of ion types. This model provides, for the first time, a computationally
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viable procedure to directly investigate the effects of changing cement chemistry on C-S-H

cohesion.

4.8 CONCLUSIONS

The semi-atomistic model and the investigations I have discussed in this chapter have eluci-

dated how the cohesive forces that emerge during cement hydration between nanoparticles

of cement hydrates are the result of the complex interplay between electrostatics, ion con-

finement, and water restructuring. The physics discovered here is not restricted to cement: it

is applicable to materials ranging from clays to colloids to biological membranes or DNA.

I have already discussed that similar models were applied to clay [24], and a theory based

on correlations between ions has been proposed as an explanation for DNA condensation

[116]. My simulations show the importance of water restructuring in all these effects for

cement, but the insight gained here has wide relevance and could be applied directly to the

other systems.

The tools I developed allow one to efficiently explore the effects of changing cement

chemistry, through its composition or the inclusion of additives. The path to stronger,

longer-lasting, and more sustainable cements requires us to explore new formulations, and

we now have the ability to make quantitative predictions on the cohesive strength of such

alternative materials depending on their physical chemistry.

In the last part of my thesis, I have attempted to bring together all results discussed so far

and integrate them quantitatively with new experiments on cement rheology and scattering.

To do this, I have been collaborating with Scott Jones and Nicos Martys at NIST. While

this effort is still in its initial phase, in the next chapter I will outline the main ideas and

preliminary results.
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CHAPTER 5

FROM COHESION AND TEXTURE TO RHEOLOGY

In the previous chapter, I have discussed the nanoscale electrostatics responsible for the

cohesion of C-S-H particles. Having developed a new physical picture for how nanoscale

cohesive forces emerge during cement hydration, the next step is to link the physical chem-

istry during cement hydration to the microstructural development discussed in Ch. 2. In

this chapter, I will discuss ongoing work to connect the microstructure to the rheological

properties of the hydrating cement. I describe my collaboration with Scott Jones and Nicos

Martys at NIST, who are working to connect the evolution of microstructure and flow prop-

erties during hydration with rheology and neutron scattering measurements. Next, I discuss

preliminary work on integrating my mesoscale simulations with these efforts, including

scattering intensity calculations and simulated shear tests. Finally, I comment on the these

results in the context of my meso- and nano-scale work, and conclude with the possible

implications of this in cement design and use.

5.1 EXPERIMENTAL CHARACTERIZATION OF MICROSTRUCTURE AND RHEOLOGY

The progressive precipitation of C-S-H causes the microstructure and rheology of the

cement paste to evolve over time. At NIST, Scott Jones is linking the rheology of setting

cement to the microstructure build up by performing simultaneous rheological and Small

Angle Neutron Scattering (SANS) measurements. These measurements can provide unique

insight into properties of the hydrating paste at early times—a period for which compara-

tively less data is available, but is crucial, as discussed throughout this thesis, to the final
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Figure 5.1: Scattering and rheology measurements of hydrating cement paste. SANS
and rheology measurements from Scott Jones [71]. Left: Scattering data show that there are
microstructural changes in the cement paste during hydration as cement grains dissolve and
C-S-H progressively precipitates. I(q) changes from a steeper slope minutes after hydration
starts to a less steep one 7 hours later, indicating a greater amount of structure at large q.
This is consistent with the newly formed C-S-H nanoparticles creating structure at small
length scales. Right: The storage and loss modulus of the hydrating cement paste, calcu-
lated from oscillatory shear at ω = 6.28rad/s, as a function of hydration time. The elastic
modulus rapidly increases during hydration as the material becomes stronger, while the
loss modulus progressively disappears as the material solidifies.

performance of cement and concrete. Most importantly, these experiments measure the

evolution of the properties of hydrating cement.

The history of the material plays an important role in the final properties, but while

those final properties have been studied extensively, there is little quantitative information

about the early stages of hydration. Nonetheless, the SANS measurements (Fig. 5.1, left)

show that there are, in fact, changes in the microstructure in the first hours of hydration,

in agreement with previously measured changes in the shear moduli during this time [80]

and with previous scattering experiments [3]. Further, these changes are mainly at high

q, corresponding to small (≈ 5− 10nm) length scales, as cement dissolution drives the

precipitation of C-S-H nanoparticles. Starting from I(q) ∝ q−3.6, the scattering intensity
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evolves towards I(q)∝ q−3 with hydration time, which is the scaling observed in mesoscale

simulations and experiments for the hardened paste [65]. This change of slope is consistent

with an increasing multiscale heterogeneity of the cement paste as the Porod regime (I(q)∝

q−4) corresponding to particle surfaces eventually appears at higher q, or smaller length

scales.

The precipitation of C-S-H also drives an increase in the elastic modulus of the paste

(Fig. 5.1, right). During the 7 hour interval between the early and late scattering curves,

G′—measured via oscillatory shear tests at angular frequency ω = 6.28rad/s—triples.

Although there are many hours left before the cement hydrates reach their final strength,

these measurements indicate that, consistent with the literature [80], there are clearly signif-

icant microstructural and mechanical changes happening very early during setting. By inte-

grating my work on modeling the microstructure and nanoscale forces with this approach, I

hope to better understand these changes and enable quantitative predictions of the mechan-

ical properties that start from the nanoscale cohesion.

5.2 INTEGRATING NUMERICAL SIMULATIONS

The mesoscale simulations at low volume fractions discussed in Ch. 2 can be used to probe

the microstructure development at early stages of hydration. The increase in small length

scale structure with time measured by experiments is consistent with the decreasing pore

size as calculated in my simulations with increasing C-S-H volume fraction (Fig. 2.9). The

precipitation of C-S-H creates a porous network at small scales, filling the larger pores

between cement grains and increasing the high q scattering intensity. Depending on the

effective interaction between C-S-H nanoparticles, this network (once percolated) could

also transmit stresses (Fig. 2.5), which would increase the elastic modulus with hydration

time as measured in the shear experiments.
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5.2.1 SCATTERING CALCULATIONS

To further this comparison between simulations and experiments, we turn to scattering

intensity calculations on my simulated microstructures. I discussed the results of such cal-

culations, based on a method of projecting the microstructure into a 2D plane [20, 44], in

Sec. 2.6. In comparing to the above experiments, we are less interested in the anisotropy—

which would be averaged out due to the random orientations of scattering surfaces in a

macroscopic sample. Thus, we can simply calculate the scattering from the structure factor

[57]:

S(q) = P(q)
1
N ∑

j,k
e−i~q·(~r j−~rk) (5.1)

where r is the position of a particle, P(q) = [ 3
qa(

sin(qa)
q2a2 − cos(qa)

qa )]2 is the form factor for

spherical particles of radius a, and the sum is over all N particles. The wave vector q has

values n2π
L where n is an integer and L is the linear size of the simulation box, setting a

lower bound for the q values. Fig. 5.2 shows the results for a fixed volume fraction of 25%

and using two different interaction potentials corresponding to Early and Late Stages of

hydration (ES and LS).

At low q, the finite size of the simulations becomes apparent and we seen an upturn

due to the system-spanning density gradient. At q > 10−1nm−1, the two systems exhibit

local peaks in the scattering intensity. These peaks correspond to typical cluster sizes,

which are larger for the LS potential. The snapshot for the ES system (Fig. 5.2, center)

shows the presence of this length scale in the well-defined cluster/branch size, while the

LS snapshot (Fig. 5.2, right) reveals a broader distribution and larger pores, consistent with

the shifted and broader scattering intensity peak. Unlike the experimental system, there is

no contribution to the scattering from the cement grains and other hydration products, so

these nanoscale features of the C-S-H structure emerge very clearly in the scattering from

the simulation. To the right of the peak, there is a high q decay that is flatter for the LS
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Figure 5.2: Scattering and snapshots from simulations. Left: Scattering intensity com-
puted from my mesoscale simulations for the two different interaction potentials at an
overall C-S-H volume fraction of 25%. At small q, the finite size of the simulation box
is apparent. At q > 10−1nm−1, there is a local peak associated with the typical clus-
tering of the C-S-H in simulations. To the right of the peak, the high q behavior shows
a decay that depends on the potential: with LS exhibiting a flatter slope. Right: Simula-
tion snapshots showing the microstructure for the ES potential (middle) and LS potential
(far right), with the color indicating number of neighbors (from blue=0 to red=12). The
system-spanning density gradients are responsible for the low q upturn in scattering while
the typical cluster/branch size gives the peak—which is more sharply defined for the ES
potential.

potential—consistent with the flatter slope at later times in the SANS data. Further work is

currently in progress with larger samples and different volume fractions. We also plan to

introduce particle size polydispersity which is certainly more appropriate for comparisons

with experiments.

5.2.2 SHEAR TESTS

The next step is to investigate the rheological properties of my simulated microstructures.

To do this, I run the simulations for hydration as described in Ch. 2. Using the fixed precipi-

tation rate R = 4, temperature T = .15ε , and a µ gradient along the z direction as described

there, I run the simulations to reach a C-S-H volume fraction of φ = 25%. Stopping the

simulations there, I use the microstructure to do shear tests as follows. Keeping the same
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interaction potential, I use Langevin dynamics with fixed temperature, T = .15ε , so the

equations of motion are:

m
d2~ri

dt2 =−~∇~riU−ζ
d~ri

dt
+~Fr (5.2)

where m is the particle mass, ζ is the damping factor, and ~Fr ∝

√
kBT m
ζ dt is a random force

corresponding to the thermal fluctuations of the solvent. The shear is applied via stepwise

affine deformations with strain increments δγ , followed by relaxation of the deformed con-

figuration over a period δ t, using the method of Colombo and Del Gado [29]. The affine

deformation Γδγ corresponds to simple shear in the xz plane, such that particle positions

are transformed according to

~r′i = Γδγ~ri =


1 0 δγ

0 1 0

0 0 1

~ri (5.3)

As the simulation box is sheared, the Lees-Edwards boundary conditions [5] are

updated to adjust the periodic images according to the applied strain. Next, the system is

relaxed for a time δ t in the affinely deformed volume according to the equations of motion

(Eq. 5.2). The ratio of δγ
δ t sets the strain rate γ̇ , and this process is repeated to obtain the

desired strain γ .

Applying this protocol to a configuration with the Early Stage (ES) potential at φ =

25%, I can calculate the shear stress σxz, using the virial formulation discussed in Ch. 2, as

a function of γ and γ̇ (Fig. 5.3, left). Like in Ch. 2, the unit energy is ε , unit mass m, and unit

length (which is equal to the particle diameter) σ . The stress in reduced units is thus ε/σ3,

while γ̇ is in units of τ−1. The stress is found to be rate-dependent, even when reducing

γ̇ by two orders of magnitude, suggesting that the microstructure used might not be solid,

since its response is not purely elastic even at small strains. In the mesoscale simulations, in

99



Figure 5.3: Implementing shear in simulations. Left: Start-up shear of simulated
microstructure with ES potential at φ = 25%. The measured stress is found to be rate-
dependent, indicating that relaxation of internal stresses occurs during the shear test. Due
to the non-equilibrium formation of this microstructure, there are stresses in the system
before shear is applied, and thermal fluctuations allow these to relax during shear. Right:
Oscillatory shear with the chirp protocol [17] to measure the in and out of phase stress
response. At low frequencies, the stress is mostly in phase with the strain, indicating an
overall elastic response.

fact, the microstructure is out of equilibrium by design, due to the continuous precipitation

of C-S-H, and this leads to the build-up of unrelaxed stresses that do not allow it to reach

mechanical equilibrium. In order to mitigate this effect, damped dynamics as applied in

[16] can be used to recover a mechanically stable state. This work is still in progress.

5.2.3 SMALL AMPLITUDE OSCILLATORY SHEAR

Small amplitude oscillatory shear allows one to measure the storage (G′) and loss (G′′)

modulus of a sample, by applying a sinusoidally varying strain γ = γ0 sin(ωt), where γ0 is

the strain amplitude and ω the frequency. The stress exerted by the material as a response

to the deformation is used to calculate the moduli. The storage modulus is associated with

the in-phase response, while the loss modulus is the out of phase response:
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G′(ω) = Re
{

σ̃(ω)

γ̃(ω)

}
; G′′(ω) = Im

{
σ̃(ω)

γ̃(ω)

}
(5.4)

where σ̃ and γ̃ are the Fourier transforms of stress and strain respectively. In my simula-

tions, this is done by solving the equations of motion (Eq. 5.2) with strain applied according

to Eq. 5.3 and Lees-Edwards boundary conditions [5] updated accordingly. From the par-

ticle positions and forces, one obtains the resulting shear stress as a function of the imposed

strain frequency. Traditionally, the procedure is repeated for each frequency ω of interest. A

more efficient method has been proposed [17] in which a range of frequencies are sampled

simultaneously using a chirp signal. The chirp strain profile has a frequency that varies con-

tinuously in a specified range, as shown in the right panel of Fig. 5.3, where I have plotted

the applied shear and measured stress from my simulations. As the stress is mainly in phase

with the strain, the overall behavior is elastic, and the moduli (as a function of frequency)

are plotted in Fig. 5.4.

5.3 INVESTIGATING TIME EVOLUTION

In considering the time evolution of the microstructural and rheological properties during

the simulations, as done in Ch. 2, there are two main parameters to account for: the inter-

action potential and the volume fraction φ . In principle, both of these should change with

hydration time. In Ch. 2, I discussed simulations with different interaction potentials cor-

responding to earlier and later hydration times. Using that as a starting point, I have run

oscillatory shear tests and measured the moduli from simulations for these two different

scenarios (Fig. 5.4). G′ and G′′ are measured in units of ε/σ3, like the stress.

That data show that G′ is, for the ES potential, greater than G′′ (Fig. 5.4), implying that

the material is solid-like. Comparatively, the LS system has weaker elastic response, with

G′ closer to G′′. These differences between the two potentials are very consistent with the
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Figure 5.4: The elastic and loss modulus of the C-S-H gels. Dots are calculated data
points while the solid line is a smoothed fit to guide the eye. At large frequencies, noise
dominates and it is impossible to make meaningful measurements. The calculated G′ is
much higher for the ES potential, which is consistent with the formation of a percolating
network that can transfer stresses as was observed in Ch. 2. The LS configuration instead
exhibited larger density gradients, network anisotropy, and pore size: which explains its
reduced ability to deform elastically.

observations about their respective microstructures in Ch. 2. For example, I demonstrated

that the formation of a percolation structure led to a redistribution of stresses in the ES

system. This indicates that the geometric percolation corresponds, in this case, to the for-

mation of a mechanically percolating network—which would behave elastically. On the

other hand, the LS system did not exhibit such a change upon geometric percolation. In

addition, it showed large density gradients and coarsening pores, which are indeed likely

to less solid-like material.

These oscillatory shear tests are consistent with the microstructural analysis of Ch. 2.

However, the modulus obtained with the interactions corresponding to later stages (LS)

of hydration is not consistent with our understanding of setting cement—which should get

harder over time. The problem arises from the fact that, to obtain the microstructure used in

theses tests, we have used the LS potential from the very start of the simulations. Without
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the initial stage where ES interactions drive the mechanical percolation and create a well-

connected C-S-H network, the progressive densification brought on by the LS interactions

happens in a far too heterogeneous way, leading to a mechanically weaker structure. The

material history, how the microstructure develops over time, indeed plays an important role

in the final properties it exhibits.

A more realistic scenario would therefore involve starting with the ES potential and

gradually shifting towards the LS potential as the simulation progresses. Now that we have

understood the nanoscale mechanisms controlling these interaction potentials during hydra-

tion (Ch. 4), it will be possible to use data on cement pore solution composition [81] to

produce a quantitative time line for the evolution of the interactions. By connecting this to

the experimental measurements of microstructure and rheology over time (Fig. 5.1), it will

then be possible to develop a mesoscale model that incorporates a time-evolving interaction

potential.

5.4 SUMMARY AND IMPLICATIONS

In the ongoing collaboration with Scott Jones and Nicos Martys at NIST, we are attempting

to integrate simulations and experiments in order to connect the mesoscale texture of the

cement paste to its macroscopic rheology during hydration. Simultaneous SANS and shear

experiments during hydration (Fig. 5.1) show that the precipitation of C-S-H creates a

heterogeneous network that strengthens the paste over time.

These observations are consistent with the microstructural changes observed in my

simulations with increasing volume fraction of C-S-H. The progressive precipitation of

nanoparticles creates small-scale porosity (Fig. 2.9) and leads to the formation of a perco-

lating network that transmits stresses (Fig. 2.5). To further these comparisons, I calculated
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the scattering intensity of my microstructures (Fig. 5.2) and performed shear tests to mea-

sure the moduli (Fig. 5.4). These results strengthen the discussion in Ch. 2: the history of

the material plays an important role in the final properties.

Now, with the results of Ch. 4, we are in a position to explore the effects of that history

more realistically. These results can then be used to motivate the interaction potentials

in the mesoscale model to create a realistic time-evolution of the microstructure, and by

integrating this approach with experiments we will be able to make quantitative predictions

of the mechanical properties. When designing new formulations of cements, the central

question is how the changes in cement chemistry will affect the mechanical properties: both

during setting (to inform the transportation and construction protocols) and in the hardened

material. The current answer is to make the new cement mixture and test it. The nanoscale

model and the approach described in Ch. 3 and 4 open the path to explore the effects of

changing cement chemistry on the cohesion. This framework would allow us to predict

those properties from first principles using the information about cement composition.

The ideas just sketched are particularly interesting for the application of 3D printing

with cement. Additive manufacturing (or 3D printing) based construction methods have the

potential to revolutionize the industry, open up new possibilities for architectural designs,

and increase sustainability. However, current methods of 3D printing cement struggle to

produce consistent end products and require deeper knowledge of the evolution of material

properties [23]. To progress, a precise control of material properties during pumping and

setting must be achieved. During setting, the flowability and buildability of cement change

rapidly, leaving a vary narrow window of time in which the material properties are such

that 3D printing can be successful [23]. With a framework to model the rheology of the

hydrating paste over time from the nanoscale cohesion and mesoscale texture, the work I

have laid out in this thesis opens new opportunities for advancing these technologies.
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CONCLUSIONS AND OUTLOOK

To design new cementitious materials with reduced carbon footprint or to improve the dura-

bility and strength of current cement, a clear understanding of the mechanisms that control

cohesion and setting is needed. Additionally, novel applications such as additive manufac-

turing (3D printing) with cement are not possible without a framework to understand how

the mechanical properties of cement develop during setting and what controls that devel-

opment. The current state of the art with regards to cement design mostly relies on empir-

ical models and experiments, with an incomplete understanding of the underlying physics,

which makes researching advancements a slow and arduous process. The central challenge

is the multiscale complexity of cement coupled to a non-equilibrium setting process. This

is the fundamental problem that this dissertation attempts to address.

The difficulties start at the nanoscale: where charged C-S-H nanoparticles produced

through the hydration of cement grains are immersed in a solution containing counterions.

Due to the high surface charge density and ion valency, mean field theories fail to pre-

dict the cohesion between the nanoparticles. Computational models which allow for ion

correlations predict attraction but still leave a multiple order of magnitude gap in attrac-

tive strength with experiments and atomistic simulations. Those C-S-H interactions then

influence the developing microstructure during hydration. The progressive dissolution of

cement grains and precipitation of C-S-H drives the non-equilibrium development of the

C-S-H gel. During this process, the effective interactions between the C-S-H nanoparticles
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change with the changing chemistry of the solution. Eventually the C-S-H, which precip-

itates at cement grain surfaces, grows into the pore solution forming a dense, percolating,

solid glue that binds together any aggregates and forms concrete.

Building on existing models, I investigated the effects of heterogeneous C-S-H growth

and time-evolving interactions on the C-S-H gel morphology. The interactions present early

during hydration drive the formation of a percolating cluster that limits stress and den-

sity gradients while maintaining porosity to enable continued hydration. As hydration pro-

gresses, the heterogeneous growth and altered interactions lead to high densities with strong

local variations as seen in hardened cement pastes. In particular, the specific evolution of

the interactions during hydration is found to play an important role in determining the final

properties.

To address this, I investigated the evolution of those interactions via a semi-atomistic

model that incorporates explicit ions, immersed in SPC/E water, and confined by charged

planar surfaces. Through simulations over a range of surface charge densities and ion types,

I demonstrated the strong spatial and dynamic correlations that arise between ions and

water. The formation of coordinated ion-water structures is responsible for reducing the

screening capabilities of water and enhancing the attractive strength compared to implicit

water models. Additionally, features such as repulsive peaks in the net force between the

confining surfaces can arise when the ion-water structures are impinged upon by those

surfaces.

These results explain the nanoscale mechanisms which are responsible for the cohesion

of C-S-H gels. They also explain how such cohesion can develop over time during hydration

as the surface charge density rises and how modifying cement composition would affect the

cohesion by introducing different types of ions. Moving forward, this provides a framework

to quantitatively predict the nanoparticle interactions for specific cement mixtures. This

framework is not limited to cement: construction materials such as clays or geopolymers
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and even biological membranes or DNA share many features at the electrostatic level, and

the framework developed for cement could be applied to all these scenarios.

The mechanical strength and flow properties of cement depend on the C-S-H microstruc-

ture which in turn depends on the nanoscale interactions. Building the models to understand

the nano- and meso-scale physics enables us to make quantitative predictions about the

effects of time, cement composition, setting conditions, and more on the macroscopic

material properties. As part of the endeavor to develop this further, I have begun to study

the rheological response of my simulated microstructures. Preliminary tests demonstrate

the strong connection between the structural features and the flow properties. By varying

the interaction, volume fraction, and other simulation parameters, this can be extended to

model the rheology corresponding to different physical conditions.

Longer term, my nanoscale model can be used in conjunction with experimental input

on cement solution chemistry to develop a quantitative timeline for the evolution of the

C-S-H nanoparticle interactions. This can also be connected to modifications of cement

chemistry, through the novel compositions or additives, so we can guide the design of

new and improved cementitious materials. Using the computed effective interactions as

input, the microstructure and material properties can be investigated via the mesoscale

model—enabling quantitative predictions based on first principles. This framework facil-

itates more efficient and intelligent material design for practical applications, and I hope

that this research will help us to make some concrete changes in the world.
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APPENDIX

DISCONTINUOUS SHEAR THICKENING IN FORCE SPACE

Discontinuous shear thickening (DST), or the abrupt viscosity increase of a suspension at

some applied stress, is explained in terms of jamming of the particles through frictional

contacts that develop under flow. It is typically associated to strong microscopic fluctua-

tions whose origin is unclear and not easily explained by spatial correlations. During the

program on The Physics of Dense Suspensions at the Kavli Institute of Theoretical Physics

in Spring 2018, I developed a collaboration with Bulbul Chakraborty and her group at Bran-

deis University (including Jetin Thomas and Deshpreet Bedi) who have been studying this

transition through the force networks emerging under shear. They have created a theory

based on this “force space” representation that is built on simulations of dense granular

systems by Abhinendra Singh at University of Chicago. By treating the force space ver-

tices as particles with some effective interaction potential, one can develop a statistical

physics framework to characterize the force network configurations accessible in flow. I

have worked on a new way of generating these effective potentials, sampling the accessible

force space configurations with MD simulations, and using a Fourier transform analysis to

study the differences between the potentials generated for the systems in and out of DST

regimes. Outside of DST, potentials exhibited a secondary minimum: a feature that can lead

to more elongated and anisotropic structures. This points to a change in long-range corre-

lations in force space associated with the DST transition [143]. This work is summarized

here.
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A.1 INTRODUCTION

Dense suspensions of grains in a fluid display an increase in viscosity η = σxy/γ̇ (thick-

ening) as the confining shear stress (σxy) or strain rate (γ̇) are increased. At a critical, density

dependent shear-rate γ̇ , the viscosity increases abruptly: a phenomenon termed Discon-

tinuous Shear Thickening (DST). In stress-controlled protocols, η ∼ σxy marks the DST

boundary [21, 91]. Experiments have also observed changes in other components of the

stress tensor such as the first normal stress difference, N1 = σxx−σyy close to the DST

regime [117]. A mean-field theory [25, 153], based on an increase in the fraction of close

interactions becoming frictional (rather than lubricated) with increasing shear stress, has

been extremely successful at predicting the flow curves and the DST flow-state diagram

in the space of packing fraction, φ and shear stress or strain rate [83, 130]. The presence

of frictional forces and the nature of the contacts between the grains has been intensively

scrutinized and investigated [31, 43, 94]. The physical picture of lubricated layers between

grains giving way to frictional contacts when the imposed σxy exceeds a critical value set

by a repulsive force [153] provides a consistent theory of DST [130], shear jamming fronts

[56] and instabilities of the shear-thickened state [26, 60].

The link between the constraints that such forces generate at the grain level and the

emerging flow properties at the level of the whole suspension, such as normal stress dif-

ferences [61, 68, 117], points to the existence of long ranged microscopic correlations that

have been, so far, elusive to any structural analysis [83]. Conventional measures such as

the microscopic pair correlation function of the grain positions, in fact, do not exhibit pro-

nounced changes accompanying DST. As a consequence, although several features relating

to the flow of dense suspensions can be well explained within the mean-field theory [25,

153], the nature of the microscopic correlations underlying this transition remains far from

clear [83]. A recent theory [142] has proposed that a representation of the shear thick-
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ening grains through their force networks, which emerges naturally from the collective

force balance constraints under flow, can help better elucidate those correlations. In this

“force space”, one can identify a correlation function that exhibits significant changes in its

anisotropy across the DST transition. These correlations reflect the collective behavior trig-

gered by changes in the nature of the contact forces, which often arise due to small changes

in grain positions difficult to detect in any positional correlations. An interesting, distinc-

tive feature of DST is that the shear stress increases less rapidly than the mean normal

stress, and hence their ratio, the macroscopic friction coefficient, decreases as the frac-

tion of frictional contacts increases. This, and direct visualizations [83], indicate that there

are important changes in the network of frictional contacts that are not captured by scalar

variables such as the fraction of frictional contacts. Remarkably, a statistical theory based

on the observed correlations in force space, provides a semiquantitative description of the

macroscopic friction coefficient and of the rheological changes accompanying DST [142].

The force-space based statistical theory, however, has only been explored through a

mean field approach, while several experiments have indicated that long-range spatial cor-

relations close to DST must be accompanied by large, intermittent stress fluctuations [112,

113, 118]. A theory in force space able to include fluctuations and predict their qualitative

change close to DST, beyond mean field approximations, could therefore provide signifi-

cant new insight into the origin and the nature of the transition. The existing theory [142]

is difficult to generalize beyond mean field because the effective potential obtained directly

from the correlations in force space is anisotropic and has a very strong clustering tendency,

which makes it difficult to use it to sample the corresponding microstates in force space. In

this paper, we outline a different procedure to (a) systematically construct a coarse-grained

effective potential, which describes the behavior at large scales in force-space, and (b) go

beyond the mean field theory using numerical simulations of this effective potential. The

idea is that the representation of the shear thickening suspension in force space can be
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mapped into a many-body, statistical mechanics description of points (akin to particles)

interacting through the coarse-grained effective potential. As a consequence, numerical

simulations that solve the corresponding many body equations of motion for the interacting

points may naturally provide a beyond-mean-field description in force space. The coarse-

grained potential we obtain here is central but, remarkably, its changes with the imposed

stress and the density of the suspension in real space capture the observed changes in the

anisotropy of the correlation functions in force space. As in the earlier work [142], we

start from the distributions of macroscopic quantities that are measured in particle based

simulations in real space of model DST suspensions [83, 130]. The simulation results

illustrate the changing nature of fluctuations as DST is approached and provide evidence of

non-trivial, highly correlated fluctuations. We use the microscopic information contained

in the simulations, i.e. the local forces exchanged by the grains, to construct, through the

constraints of local force balance, the representation of the shear thickening suspensions in

terms of the underlying force network. To quantify the collective behavior of the changes

detected in the force space representation, we apply a cluster analysis tool and show that

two distinct clustering scales emerge as DST is approached, reflecting a scale separation of

contact forces. From the representations of different flow-states, we construct an effective

interaction potential in force space through a coarse-graining procedure, which is justified

by the scale separation observed in the cluster analysis. We find that changes occur in this

potential as a function of packing fraction and stress close to DST. Following a possible

analogy with equilibrium statistical mechanics, molecular dynamics simulations based on

this effective potential suggest that the different regions of the shear-thickening flow-state

diagram stem from qualitatively different underlying force-space state diagrams across the

transition, whose differences can be traced back to the changes in the effective potential. We

discuss the implications that the observed changes in the coarse-grained potential may have

111



for the force space representation of the suspension and outline the emerging questions for

future work on an effective field theory of the DST transition.

This paper is organized as follows. In Section A.2, we present a brief summary of the

shear-stress controlled microscopic simulations. Section A.2.2 presents distributions of the

strain rate obtained from time series of the simulations data. In Section A.3, we present

a short description of the force-space representation. This is followed by the clustering

analysis of particle patterns and force-space patterns in Section A.4. Finally, in Section A.5,

we present our results for the effective interaction potential, and discuss the implications of

our statistical analysis.

A.2 SIMULATION METHODS

We simulate a two-dimensional monolayer of non-Brownian spherical frictional particles

that are immersed in a Newtonian fluid under an imposed shear stress σxy. This gives rise

to a time-dependent shear rate γ̇ [86, 127] and velocity field ~v = γ̇(t)~̂v(x) = γ̇(t)(y,0).

Lees-Edwards periodic boundary conditions are used with N = 2000 particles in a unit

cell. Bidisperse particles of radii a and 1.4a mixed at equal volume fractions are used to

avoid ordering during flow [84]. In the simulation scheme presented here, the particles

interact through near-field hydrodynamic interactions (lubrication), a short-ranged repul-

sive force, and frictional contact forces. The simulation model used here has been shown

to accurately reproduce the experimentally measured rheology for dense shear-thickening

suspensions [84, 126].

The motion is considered to be inertialess, so that the equation of motion reduces to

force/torque balance between hydrodynamic (~FH), repulsive (~FR), and contact (~FC) interac-

tions,

~0 = ~FH(~X ,~U)+~FC(~X)+~FR(~X), (A.1)
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where ~X and ~U denote the positions and velocities/angular velocities of all particles,

respectively. The repulsive force ~FR is conservative in nature and can be determined based

on the positions ~X of the particles. On the other hand, calculation of the tangential compo-

nent of the contact force ~FC is more involved as it also depends on the contact deformation

history.

The translational velocities are non-dimensionalized by γ̇a and the shear rate and rota-

tion rates by γ̇ . The hydrodynamic force is the sum of forces arising from the drag due to

the motion of the particle relative to the surrounding fluid and the resistance to deformation

imposed by the flow:

~FH(~X ,~U) =−RFU(~X) ·
(
~U− γ̇ ~̂U∞

)
+ γ̇RFE(~X) : Ê∞, (A.2)

where ~̂U∞ = (~̂v(y1), . . . ,~̂v(yN), ~̂ω(y1), . . . , ~̂ω(yN)), and Ê∞ = (ê(y1), . . . , ê(yN)) is the nor-

malized strain rate tensor. RFU and RFE are position-dependent resistance tensors and

include the “squeeze”, “shear” and “pump” modes of pairwise lubrication [8], as well as

one-body Stokes drag. Regularization of the resistance matrix is achieved by introducing

a small cutoff length scale δ = 10−3, typical for non-Brownian suspensions [84]. This

regularization emulates the occurrence of contacts between particles due, for example, to

surface roughness. The lubrication force is upper-bounded, and negative interparticle gaps

l (i.e., particle overlaps) are allowed in our simulations.

We use a stablizing repulsive force decaying exponentially with the interparticle gap

l ≥ 0 as |~FR| = F0 exp(−l/λ ), with a characteristic Debye length λ . This force represents

an electrostatic double layer interaction between particles. In the simulations presented in

this study, we use λ = 0.02a.

To model contacts between particles – which occur only when the shear force is large

enough to overcome the repulsive force F0 – we use linear springs with both normal

and tangential components, as is commonly done in soft-sphere Discrete Element Method
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(DEM) simulations for dry grains [33, 82]. Note, however, that there is no dashpot in this

model, since hydrodynamic resistance provides the source of energy dissipation. The cor-

responding normal (kn) and tangential (kt) spring constants used here satisfy kt = 0.5kn.

The tangential and normal components of the contact force F(i j)
C between two particles sat-

isfy Coulomb’s friction law, i.e., |F(i j)
C,t | ≤ µ|F(i j)

C,n | with µ being the interparticle friction

coefficient. In this study, we use µ = 1. This value of friction coefficient µ is comparable

to experimentally measured values [42], where µ is reported to be in the range 0.6–1.1 for

polymer brush-coated quartz particles of diameter 2a ∼ 10 µm, while it is higher than the

value of 0.5 reported by Comtet et al. [30]. Some softness is allowed at the contact; we tune

the spring stiffness for each (φ ,σxy) such that the maximum overlaps between particles do

not exceed 3 % of the particle radius during the simulation, thereby staying close to the

rigid limit [84, 128, 129].

The equation of motion (A.1) is solved under the constant shear stress σxy constraint.

At any time during the simulation, the shear stress in the suspension is given by

σxy = Σ12 = γ̇η0

(
1+

5
2

φ
)
+ γ̇ηH +σR +σC (A.3)

where η0 is the viscosity of the suspending fluid, ηHγ̇ = γ̇V−1{(RSE −RSU ·R−1
FU ·

RFE) : Ê∞
}

12 is the contribution of hydrodynamic interactions to the stress, and σR,C =

V−1{XFR,C−RSU ·R−1
FU ·FR,C

}
12, where RSU and RSE are position-dependent resis-

tance matrices giving the lubrication stresses from the particle velocities and resistance to

deformation, respectively [69, 84], and V is the volume of the simulation box. At a fixed

shear stress σxy the shear rate γ̇ is the dependent variable which is calculated at each time

step using [86]

γ̇ =
σxy−σR−σC

η0

(
1+2.5φ

)
+ηH

. (A.4)
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Figure A.1: Flow curves. Relative viscosity ηr plotted as a function of dimensionless
applied stress σxy/σ0. The symbols are simulation data for various packing fractions. The
solid lines are predictions from Eq. (A.6) for σ∗ = 0.78σ0. The dashed line represents
ηr ∝ σxy/σ0, representing DST.

The full solution of the equation of motion (A.1) under the constraint of constant fixed

stress (A.3) thus reduces to calculating the velocity [86]

U = γ̇Û∞ +R−1
FU ·
(
γ̇RFE : Ê∞ +FR +FC

)
. (A.5)

From these velocities, we update the positions at each time step.

Lastly, the unit scales for strain rate is γ̇0 ≡ F0/6πη0a2 and σ0 ≡ η0γ̇0 = F0/6πa2 for

the stress.

A.2.1 FLOW CURVES AND FLOW STATE DIAGRAM

Fig. A.1 shows relative viscosity ηr plotted as a function of scaled shear stress σxy/σ0 for

simulations at several packing fractions. The relative viscosity data shows features typical

of dense non-Brownian suspensions: shear thinning at low stress (arising due to the specific

simulation model used here), thickening at intermediate stresses, and plateauing at high

stresses σxy/σ0 > 10. It has been previously shown that the physics behind shear thickening
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and thinning are distinct [84, 130]; hence, in the following we only focus on the thickening

behavior.

We observe that the extent of thickening increases with φ . To characterize the steepness

of the viscosity in the η(σxy/σ0) flow curve, the shear thickening portion is fitted to η ∝

(σxy/σ0)
β , where β < 1 signifies Continuous Shear Thickening (CST), β = 1 implies that

the viscosity increases for unchanging shear rate γ̇/γ̇0 = η/(σxy/σ0) and hence indicates

the onset of DST, and β > 1 designates DST. In this way, we identify φ = 0.785 as the

packing fraction at the onset of DST between two flowing states, as is evident from ηr ∝

(σxy/σ0)
β (i.e., β = 1) in Fig. A.1.

The simulation data is described well by an analytical mean-field theory, which is a

slight extension of that initially proposed by Wyart and Cates [153]. This theory, used to

describe the rheology and flow-state diagram of dense suspensions, centers on the fraction

of frictional contacts in the system, f (σxy), as a singular measure of the crossover between

two distinct stress-independent rheologies at low and high stresses – namely, a lubricated,

frictionless branch, and a frictional branch with a non-zero value of the microscopic friction

coefficient, µ .

Using f , we can introduce stress-dependent rheological quantities that interpolate

between their lubricated and fully-frictional values. In particular, the stress-dependent

viscosity can be written as

ηr(φ ,σxy) = αm(σxy) [φm(σxy)−φ ]−2 , (A.6)

where the stress-dependent jamming volume fraction is

φm(σxy) = φ µ
J f (σxy)+φ 0

J [1− f (σxy)] , (A.7)

and the stress-dependent coefficient is

αm(σxy) = αµ f (σxy)+α0(1− f (σxy)), (A.8)
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in which α0,µ = 0.102, 0.173 are stress-independent constants determined via fits to the

viscosities of systems of frictionless and frictional particles, respectively. Finally, the frac-

tion of frictional contacts is modeled as f (σxy) = exp [−σ∗/σxy], based on previously pub-

lished results [55, 59, 84, 96, 117, 130], with σ∗ = 0.78σ0, as determined by fit to the

φ = 0.76 data.

The viscosity curves modeled by Eq. (A.6) are compared to simulation data in Fig. A.1

and show good agreement, overall.

The fit of this mean-field model to the simulation data is presented as a flow state

diagram in φ - σxy/σ0 space in Fig. A.2, in which three important packing fractions, φC,

φJ(µ), and φ 0
J , are indicated by vertical lines. Above φ 0

J there is no flow at any stress

(without deformation of particles, which we have not explored here), while above φJ(µ) the

frictional state is jammed. φC is the minimum packing fraction at which DST is observed.

In the low-stress portion of the state diagram, i.e., σxy/σ0 � 1, the shear forces are

smaller than the repulsive force, and, thus, particles do not come into contact. In this case,

frictional forces are not activated, and so the rheology diverges at φ 0
J . On the other hand,

in the large-stress portion (σxy/σ0� 1), most of the close interactions (or “contacts”) are

frictional, which leads to a divergence of the viscosity at φ µ
J < φ 0

J . In these stress extremes,

the viscosity is stress-independent.

For intermediate stresses (0.3 < σxy/σ0 < 10), continuous shear thickening is observed

in the range of φ < φC. For φC ≤ φ < φ µ
J , DST is observed between two flowing states

and is termed as DST1. The dashed line is the envelope of the DST states, with φC being

the point with the minimum φ value along this line. This line is determined as the locus of

points for which dγ̇/dσxy = 0 in a flow curve γ̇(σxy). For φ > φ µ
J , the upper boundary

of the DST region is actually jammed as shown by the stress-dependent jamming line

φm(σxy), thus DST occurs between flowing (low stress) and jammed (high stress) states,

and is termed as DST2. The stress required to observe shear thickening (CST) is indepen-
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Figure A.2: Phase diagram in the shear stress–packing fraction (σxy,φ) plane. The
left dashed curve (red) indicates the points where dγ̇

dσxy
= 0. The right solid curve (blue)

illustrates the packing-fraction-dependent maximal stress above which the suspension is
shear-jammed, i.e., above which no flowing states exist. The dashed and dotted-dashed
vertical black lines represent the frictional and frictionless jamming points, respectively.
Finally, the dashed vertical red line shows the minimum packing fraction φC at which DST
is observed.

dent of the packing fraction, while the minimum stress required for DST and shear-jammed

(SJ) states decreases with increase in packing fraction φ . Eventually these curves converge

and the minimum stress for jamming tends to zero as the frictionless jamming point φ 0
J is

approached.

The data just discussed provides one indication that the mean-field model does not

capture the complete physics of the DST transition, since it does not provide a quantitative

description of ηr for φ = 0.80 and high stresses (σxy/σ0 ≥ 2), as seen in Fig. A.1. In the

next section, we show that this is the regime in which the strain-rate fluctuations exhibit

significant non-Gaussian behavior.
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Figure A.3: Strain rate distributions. The curves in each figure represent probability dis-
tribution of strain rates (γ̇) at different stresses (σxy/σ0) at two different packing fractions:
φ = 0.77 (left) and φ = 0.80 (right). The stresses at which the distributions are plotted are:
σxy/σ0 = 0.5 (blue), σxy/σ0 = 1.0 (red), σxy/σ0 = 2.0 (yellow), σxy/σ0 = 5.0 (purple),
σxy/σ0 = 10.0 (green), σxy/σ0 = 20.0 (cyan) and σxy/σ0 = 100.0 (brown). The deviations
from the Gaussian (black dashed) distribution are much more pronounced at φ = 0.80, as
compared to φ = 0.77. The average strain rate (〈γ̇〉) and standard deviation (σγ̇ ) of the
NESS have been used to scale the distributions at different stresses.

A.2.2 STRAIN RATE DISTRIBUTIONS

The viscosity, and flow-state diagram summarized above, provide a description of the time-

averaged properties of the DST transition that is now fairly well established [84, 126]. The

flow curves are obtained by computing 〈γ̇〉, the time average of γ̇ calculated from Eq. A.4.

A question that has not been explored in any great depth is how the fluctuations about the

averaged quantities evolve with packing fraction and shear stress in this numerical model of

DST. Experiments indicate large-temporal fluctuations of the stress detected by a rheometer

under controlled shear rate [113].

In this section, we analyze the evolution of the temporal fluctuations of γ̇ as φ and σxy

are varied across the DST transition in Fig. A.2. As seen from Fig. A.3, the fluctuations of

γ̇ are distributed narrowly around the mean for φ in the CST regime (φ = 0.77). In the DST

regime (φ = 0.80), however, one observes significant non-Gaussianity in the distributions.

Although the system size in the simulations is relatively small and probably not sufficient to
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establish the exact form of the distribution, the qualitative change we detect from φ = 0.77

to φ = 0.80 for a given system size points to the presence of longer-ranged correlations. It

is to be noted that the non-Gaussian behavior is pronounced only within the DST region of

the phase diagram where the viscosity is anomalously high, and is not a simple consequence

of the γ̇ = 0 cutoff on the distribution, since that would occur at any density at low enough

stresses.

The presence of anomalous (non-Gaussian) temporal fluctuations raises the question of

what local interactions can lead to the system slowing down or speeding up as a whole.

Earlier studies of pair correlations [83] of grains failed to identify any significant changes

in positional correlations. This observation is not inconsistent with the model of DST based

on the nature of contact forces changing from lubricated to frictional, since relatively small

changes in positions of the grains are all that is required to trigger this transition. A repre-

sentation that is sensitive to these changes in the contact forces are force-tiles (Maxwell-

Cremona diagrams) [122, 147]. This was the representation previously used in constructing

the statistical theory of the stress anisotropy [142]. In the next section, we review the con-

struction of force-tiles and the evolution of correlations in this space across the DST tran-

sition.

A.3 CORRELATIONS IN FORCE SPACE

In steady state, flowing suspensions provide an ensemble of microscopic states that

could constitute, in principle, the basis for a statistical mechanics description of the

non-equilibrium transition associated to shear thickening. The equations of motion that

generate those microscopic states are determined by the constraints of force balance. The

idea that the forces acting on the grains and the constraints that emerge from mechanical

stability can provide the right statistical ensemble to build a statistical mechanics frame-
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work for athermal jammed systems has been developed and explored in the context of

granular materials (a review appears in Ref. [13]), and recently extended to shear thick-

ening suspensions [142]. In two-dimensional systems, the force balance constraints can

be naturally accounted for by working in a dual space, known as a force tiling. In a force

balanced configuration of grains with pairwise forces, the “vector sum” of forces on every

grain, i.e. the force vectors arranged head to tail (with a cyclic convention), form a closed

polygon. Next, because of Newton’s third law, every force vector in the system has an

equal and opposite counterpart that belongs to its neighboring grain. This leads to the force

polygons being exactly edge-matching. Extending this to all particles within the system

leads to a force tiling [122, 147]. In this representation, the pairwise forces acting at each

contact between two grains correspond to edges (or bonds). The vertices where the bonds

meet identify vectors in this space, the vector height fields ~h, such that the differences

between two such vectors connected to the same bond gives the pairwise force acting on

the contact represented by that bond (see Fig. A.4). The adjacency of the faces in the tiling

is the adjacency of the grains, whereas the adjacency of the vertices is the adjacency of the

voids (the heights are associated with the voids in the network). For the suspensions, in

addition to the pairwise forces between grains, each particle experiences a hydrodynamic

drag, which can be represented as a body force. Imposing the constraints of vectorial force

balance in the presence of body forces leads to a unique solution for modified height fields,

given the geometrical properties of the contact network [111].

It is important to notice that the height (or force space) representation is ideally suited

for exploring the statistical properties of stresses, both local and global. In the continuum,

the height fields define the local Cauchy stress tensor, by the relation σ = ∇×~h, and the

area integral of σ , or the force moment tensor, Σ [58], in terms of difference of the height

fields across the system:
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σ =

 ∂yhx ∂yhy

−∂xhx −∂xhy

 ;Σ =

 LyΓyx LyΓyy

−LxΓxx −LxΓxy

 (A.9)

where~Γx(y) represents the sum of forces along the x(y) directions, and Lx(y) represents the

linear dimensions of the system (σ = Σ/LxLy). Additionally, global torque balance implies

Σxy = Σyx. In our simulatons Lx = Ly = L, hence Γyy =−Γxx = Lσxy.

At a microscopic level, each force tiling is specified by a set of vertices and a set of

edges that connect these vertices. The distances between the vertices quantify the internal

stress in the system, whereas the edges, which quantify the specific contact forces in a

configuration, can be thought of, in a statistical sense, as fluctuating quantities, with con-

nections between pairs of vertices chosen with some weights. We can therefore think of the

vertices of the force tilings as the points of an interacting system of particles. The effective

interactions between the vertices arise from the constraints of mechanical equilibrium, and

from integrating out the edges.

Using the pair correlation function in force space (i.e. the pair correlation function of

the height fields over the force tiling) one can construct an a priori probability distribution

for the microscopic states (i.e. the different force tiles corresponding to the contact network

of the grains under flow) and use it to define the relevant statistical ensemble to which the

non-equilibrium steady states (NESS) in a dense suspension at a given σxy and φ can be

mapped [142]. Such an ensemble has been proven to successfully describe the steady-state

averages and the flow-state diagram. Here we pursue a similar approach, however, we

devise an explicit coarse-graining scheme to construct an effective potential that describes

the interactions of height vertices separated by distances that correspond, statistically, to

the non-hydrodynamic contact forces. The coarse-graining scheme relies on a separation

of scales that we identify using a clustering algorithm that is presented in the next section.
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Figure A.4: Force tile construction. a) A snapshot of a suspension of 2000 soft frictional
disks sheared at a variable strain rate γ̇ , with the shear stress σxy held fixed [142]. The lines
represent the pair-wise (lubricated and frictional contact) force vectors between the indi-
vidual grains. b) The force tiling associated with this flowing dense suspension. The bonds
correspond to the pairwise forces, with larger polygons representing grains with higher
stress. The vertices of the tiling represent height vectors~h = (hx,hy), whose difference pro-
vides the pairwise force at each bond. ~Γx = (Γxx,Γxy) and ~Γy = (Γyx,Γyy) represent the
sum of forces in the x and y directions respectively. The regions outside the parallelogram
represents periodic copies of the system.

A.4 CLUSTERING IN REAL SPACE AND FORCE SPACE

As we have discussed at length, the phenomenon of DST arises primarily from the

switching of lubricated contacts to solid-on-solid frictional contacts triggered by changes

in the positions of grains that are minuscule compared to the size of the grains. This sepa-

ration of scales necessitates a study of correlations in both real-space and force-space. As

is visually evident from Fig. A.4, there are correlations that exist between the positions

of particles, and between the positions of the height vertices. Two-point correlations char-
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acterized by the pair correlations functions g(~r) and g∗(~h) provide the simplest measure

of correlations. Although g(~r) is different from that of an ideal gas, and reflects strong

excluded-volume effects, it does not evolve significantly with φ or σxy [85]. Pair corre-

lations in force-space, g∗(~h), were used to construct an effective potential [142] and a

statistical model for DST. However, the strong clustering, which creates a very large peak

in g∗(~h) at small h, leads to a very deep minimum at h≈ 0 in the effective potential because

of its form (−ln(g∗(~h))) that we have chosen. This feature hindered attempts to carry out

detailed numerical analysis of the phase behavior arising from the potential and thereby

incorporate fluctuations beyond the meanfield analysis [142]. Our objective is to use the

force-space approach, which provides a more sensitive measure of clustering and correla-

tions, to construct a coarse-grained effective potential that can describe the correlations at

h scales that are relevant to the DST transition. To this end, we use a clustering algorithm

to identify relevant scales in both real-space and h space.

We perform a density based clustering analysis of both grain positions and vertices of

force tiles using the DBSCAN algorithm [40]. In the DBSCAN technique, the set of points

belonging to a single cluster consists of the union of points contained within an initial circle

of probing radius s centered at a given point, those contained within all circles of the same

radius s successively centered at all other points contained within the initial circle, and so

on in an iterative sequence that continues until there are no new points contained within any

subsequently-drawn circle (see Fig. A.5 for an illustration). This algorithm thereby ensures

that all pairs of points from two different clusters are separated by distances greater than

the probing radius s.

In usual implementations of DBSCAN, an optimum probing radius is determined to

identify the most pronounced clustering tendencies [40]. Our aim is to use DBSCAN to

identify characteristic clustering scales, and analyze how these evolve with packing frac-

tion and stress. Therefore, we do not implement the optimization procedure but instead
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identify the scales by measuring the number of clusters as a function of the probing radius.

In addition, we do not discard any points as “noise” points, which is the normal practice

in DBSCAN by requiring a minimum density in a cluster. In our implementation, the min-

imum number of points in a cluster is one such that all points in a pattern are included in

some cluster.

The value of Nc(s) as s→ 0 has to be the total number of points in the system since

each point forms its own cluster. As s→ system size, Nc(s)→ 1. Our algorithm probes the

density distribution of point patterns at different length scales by monitoring the number of

clusters, Nc(s), as a function of the probe size s. For a point pattern with uniform density,

Nc(s) decreases continuously with s. In a periodic lattice, where the distance distribution

of nearest neighbors is a delta function, Nc(s) exhibits a jump discontinuity at the lattice

spacing. For a complex pattern, we expect Nc(s) to show significant changes in its deriva-

tives at scales where the distance distribution has structure.

As seen from Fig. A.6, the clustering properties of the grain centers in the CST regime

(φ = 0.76) and the DST regime (φ = 0.80) are virtually identical. The abrupt decreases

in Nc(s) at s = 2,2.4,2.8 correspond to the first layer or ordering of the nearest neighbor

grains, with splitting due simply to the bidispersity. Beyond these scales, Nc(s) decreases

smoothly, and therefore, the density is uniform.

The situation is dramatically different for the clustering properties of height vertices

(Fig. A.7). In the CST regime, Nc(s∗) decays continuously with s∗, except for a small

plateau region at intermediate values of s∗. In the DST regime, we can clearly identify three

different decay regimes in Nc(s∗): an initial, relatively fast decay to a plateau with very slow

decay, followed by a smooth decay. The length of the plateau is sensitive to the stress, as

is clearly evident in the plots of the derivatives. The plateau developing at larger packing

fractions and stresses is a signature of the clustering of the small-scale clusters into meta-

clusters. The length of the plateau is a measure of the scale of this meta-clustering. It is the

125



Figure A.5: DBSCAN algorithm. Top panel shows representative point patterns from the
simulations in real space (centers of grains) and force-space (vertices of force tiles). The
bottom panel illustrates the application of the DBSCAN algorithm [40] to such point pat-
terns. The red points (A) belong to one cluster since all of these points can be reached
by drawing circles with the probing radius s, centered at these points. The double-headed
arrow between red points indicates that one can reach these points linked by the arrow
traversing in multiple ways. The green points (B, C) are the endpoints of the cluster, and
can be reached only from the penultimate particle as shown by a single-headed arrow. The
blue point (N) is an example of a “noise” or isolated point. It is the lone point of the cluster,
i.e., it is not reachable from any other point by drawing circles of the radius (s).
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Figure A.6: Real space DBSCAN analysis. Number of clusters (Nc) obtained from the
DBSCAN analysis for φ = 0.76 (left) and for φ = 0.80 (right) for different stresses (σxy/σ0)
as function of length scale (s), which is measured in units of the small-grain diameter. The
DBSCAN analysis is performed on the point pattern of the centers of grains in a given con-
figuration of the NESS. The results are then averaged over the ensemble of configurations
sampled in the dynamics. The three sharp drops in Nc(s) at 2 ≤ s≤ 3 are indicative of the
bidispersity of grain sizes and a clear layering of nearest neighbors.
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Figure A.7: Force space DBSCAN analysis. Number of clusters (N∗c ≡ Nc(s∗)) obtained
from the DBSCAN analysis (left) and its derivative with respect to the probing length (s∗)
(right) for different packing fractions (φ ) and stress (σxy/σ0). Emergence of a separation
of scales is evident in the derivative plots.

meta-clustering that shows significant changes across DST. An earlier analysis [121] led to

similar conclusions. We note that vertices that are close to each other are not necessarily

connected by an edge in the tiling. Therefore, the distance distribution is not equivalent to

the contact force distribution.

The structure in Nc(s∗) at small s∗ reflects the small-scale clustering of height vertices

that arise, statistically, from the small contact forces. As noted earlier, these forces arise

primarily from distributing the hydrodynamic drag force between contacts, and we would

like to exclude them from our statistical analysis. Our interest is in constructing an effective

potential that captures the changes brought about by switching from lubricated to frictional

forces. These occur at scales s∗ ≥ 1, which corresponds to forces that are comparable in

magnitude to the boundary dimensions of the force tiles (Fig. A.4). In the next section,
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Figure A.8: Coarse-graining force vertex distributions. Snapshots show the change in
our system after applying a coarse-graining procedure. While the point number has signif-
icantly decreased, the larger scale structures seem unaffected. Quantitatively, g∗(h) shows
that the low h peak has been cutoff at h = 1.1 (the size of the bins we used for our clus-
tering) and is now able to capture longer range structure that was drowned out by the
extreme short-range clustering.

we present our systematic coarse-graining approach, which leads to the desired effective

potential.

A.5 CONSTRUCTING EFFECTIVE POTENTIALS

In order to focus on the larger forces, i.e. the larger length scale in force space as high-

lighted by the DBSCAN-based clustering analysis, we adopted a coarse-graining procedure

for height vertices. The basic idea is to replace the tightly packed clusters of points with

effective points representing these small clusters. This was carried out for each configu-

ration by creating an empty replica, looping through the vertices randomly, and adding a

point to the replica if its distance from any points already in the replica was ≥ lbin. Varying

lbin (expressed in units of F0σ0/σxy, defined in Section A.2) provides different extents of

coarse-graining and may change the characteristics we discuss in the following. Neverthe-

less, a reasonable choice is a value of lbin that preserves the structure in force space that
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is indicated by the DBSCAN analysis (Fig.A.7) while removing the small-scale clustering

associated primarily with hydrodynamic drag forces. In the following we discuss the results

obtained for a binning size lbin = 1.1 that satisfies this criterion. In particular we compare

the results obtained for a packing fraction of the grains, φ = 0.76, which corresponds to

systems that lie in the CST part of the flow-state diagram for any value of the imposed

shear stress, to those for φ = 0.80, which corresponds to systems that undergo DST upon

increasing the imposed stress (see Fig. A.2).

Analyzing the resulting coarse-grained height vertex configurations, we can see that

the coarse-graining procedure decreases clumping at small distances while maintaining the

same overall distribution at larger scales (Fig. A.8). Indeed, when we compute g∗(h) we can

clearly see the signs of longer-range structure, differently from the g∗(h) computed before

coarse-graining which was completely dominated by the peak near h ≈ 0. Moreover we

notice that the coarse-graining procedure reveals some qualitative differences between the

pair correlations at volume fractions that correspond or not to a DST region of the flow-state

diagram. In particular, compared to φ = 0.80, there is a dip in the correlations around h = 2

for φ = 0.76. Notably, this difference appears even in the radially-averaged g∗(h) which

ignores the anisotropy that was the primary focus of the earlier force-space based effective

potential [142]. Without the coarse-graining procedure, the main difference that had been

noted between volume fractions was the change in anisotropy. This observation provides

an alternative approach to constructing a statistical mechanics framework based on a central

potential, which facilitates numerical simulations beyond mean-field calculations.

We can now compute an effective pair potential from the pair correlation function of

the coarse-grained height configurations as V ∗(h) = −ln[g∗(h)]. Since by coarse-graining

we have erased the correlations at h < lbin = 1.1, we avoid the problem of a very deep min-

imum at h≈ 0. Doing so reveals a short range well for both densities (i.e. both in the CST

and DST regimes) and a repulsive shoulder in V ∗(h) around h = 2 for the φ = 0.76 poten-
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Figure A.9: Effective interaction potentials. From the measured g∗(h), it is possible to
construct a pair potential that goes as V ∗(h) = −ln[g∗(h)]. The dots in this plot represent
this V ∗(h). To this, we fit an effective pair potential that consists of a LJ-style well plus a
Gaussian bump. Fitting parameters are listed in legend. Scaling the potential by the LJ fit
parameters shows the clear qualitative and quantitative differences in the shoulder at h = 2
that depends strongly on φ .

tial (Fig. A.9). This last feature appears instead to be dependent on φ and is suppressed in

the DST regime—which holds true for systems across the full range of applied stresses. If

we were to construct an analogous thermal system of particles interacting through such a

potential, the presence of a short range minimum would produce a gas-liquid phase separa-

tion with clustered non-equilibrium states in various conditions [6]. These clustered states

are typically isotropic for a central potential. The secondary length scale introduced by the

repulsive shoulder, on the other hand, can qualitatively change the equilibrium phase dia-

gram associated with the potential and, as a consequence, also the non-equilibrium states

accessible under different conditions. A competing secondary length scale can in fact intro-

duce different spatially modulated and even anisotropic equilibrium phases which may

in turn favor spatially modulated non-equilibrium states [28, 64]. These changes in the

phase diagram can suppress, in certain cases, the gas-liquid phase separation and quali-
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tatively change the nature of the density fluctuations [18, 88]. A proper analogy between

thermal systems and the force space representation of non-equilibrium steady states of

shear-thickening suspensions is far from being worked out. However, the above observa-

tions suggest that the force space representation could be akin to a thermal system whose

accessible microstates change with a change in the shape of the interaction potential, which

occurs across the CST-DST boundary in sheared suspensions.

To illustrate the fact that the changes in the shape of the potential detected here can

modify the microstates accessible to the force space representation of the suspension, we

have turned the coarse-grained effective potentials into an analytical form that can be used

in molecular dynamics (MD) numerical simulations. A Lennard-Jones (LJ) style attractive

well plus a Gaussian bump provides a reasonable fit of all the potentials obtained from

the force space representation of the shear thickened suspensions, as shown in Fig. A.9

(left). Scaling the fits by the LJ parameters (right) clearly shows that the repulsive bump

(or shoulder) at h ≈ 2 disappears in the DST region: the scaled fits obtained for different

imposed stresses lie on top of each other for φ = 0.76; however, they vary as a function of

the stress for φ = 0.80, with the maximum decreasing upon crossing into the DST region.

We have then performed NV T MD simulations of point-like particles interacting through

the coarse-grained effective potentials just discussed. 1

To explore the accessible states under different conditions, we vary the density and the

temperature of this fictitious thermal system. The number of particles is varied between

1000 and 8000 while keeping the system size fixed. The particles are initially placed ran-

domly and given a random velocity sampled from a Maxwell-Boltzmann distribution cen-

tered around the chosen temperature. The temperature used in the NVT simulations is set

by the inverse energy scale, that corresponds to the maximum strength of the effective

1We have used the LAMMPS library to perform simulations in a 2D square box with dimensions
Lx = Ly = 100. [108]
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potentials [45]. Starting with thermal energy equal to twice the potential well, we slowly

reduce the temperature to the desired value. The rate is sufficiently slow that we do not see

a rate dependence. Finally, we run the system at the final, fixed temperature.

Fig. A.10 shows state diagrams constructed from the two potentials of Fig. A.9, distin-

guishing clustered from non-clustered liquid states in force space, when the simulations are

run in equivalent conditions, using exactly the same protocol and system size. The figure

shows how clustering occurs under different conditions depending on the potential, and

that the type of clustering can be qualitatively different. The effective potentials used are

obtained for different densities of the suspension, and we know that varying the imposed

load produces different densities of vertices in force space, but we do not yet have a clear

understanding of what would play the role of temperature in the force space representation.

Hence we cannot establish here a direct connection between the states sampled in the sim-

ulations (as for example shown in Fig. A.10) and those physically relevant to the force tiles

of the sheared suspension. With respect to what variable in the hydrodynamic simulations

maps most closely to the temperature in the NV T MD simulation of the points in force

space, however, we note that the original force tiles from the hydrodynamic simulations are

created from instantaneously force balanced states, which are explored under the external

driving: the driving induces network rearrangements that allow the suspension to sample

the microscopic states compatible with the force balance constraints. V ∗(h) is constructed

with no information about the network reorganization, but contains information about the

height vertex distribution. Is there a way to connect the sampling of the phase space asso-

ciated with V ∗(h) via MD simulations to the way the suspension samples the microscopic

NESS via real space dynamics due to the external driving? While this question requires a

much deeper investigation, we speculate here that just as thermal fluctuations produce the

noise that allows for phase space exploration in ordinary MD simulations, a similar role is

played by the fluctuations in the shear rate of the suspensions subjected to an imposed shear
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Figure A.10: State diagrams of the calculated potentials. We see a transition from a clus-
tered to non-clustered fluid as we increase temperature. Snapshots illustrate the differences
between the potentials when looking at the same temperature and density, with exactly the
same simulation protocol. The types of clusters that form are different and the transition to
the clustering regime happens at different temperatures.

stress. The fluctuations in the shear rate, such as the ones detected and discussed in Section

A.2, are the manifestation of the system adjusting to the imposed driving by sampling the

microstates compatible with the force balance constraints through network rearrangements.

Since the network rearrangements are not explicitly included in the force space dynamics,

they could translate into the noise needed to sample the force tiles associated to the real

space dynamics of the grains.

The clustering of the points in force space obtained for the two effective potentials using

the MD simulations (Fig. A.10) can be mainly ascribed to their short length-scale features

[64]. Nevertheless, there are intriguing difference between the effective potentials at larger

length-scales that can be better highlighted by analyzing the Fourier transform (Fig. A.11).

The low qh behavior can in general be fitted by a quartic polynomial, and plotting the q2
h

coefficients as a function of stress in real space for the two volume fractions shows that

the coefficients are always smaller for φ = 0.80 and that they do not change much with the
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Figure A.11: Fourier analysis. Fourier transforms of potentials. Top: The transforms
deviate only at low qh, which corresponds to long distances. The large qh behavior is vir-
tually identical. At small qh the potentials can be fit by a quartic polynomial. Bottom:
Notably, the coefficients mainly differ for the q2

h terms. When plotting these for different
stress σxy/σ0, we see that there is a significant drop in the DST region (φ = 0.80) as stress
increases. The lower q2

h coefficient corresponds to a flatter Ṽ ∗(qh) near qh = 0, as seen in
the bottom right panel showing the transforms for different values of σxy/σ0. In this plot,
a vertical shift has been applied to each transform so that Ṽ ∗(0) = 0, making it easier to
compare how the transforms approach this maximum for different σxy/σ0.
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stress at φ = 0.76, but they clearly decrease with the stress at φ = 0.80. The decrease in the

q2
h coefficient, while the q4

h coefficient remains steady, must correspond to a flattening of the

potential. This difference can be seen when plotting the Fourier transforms at φ = 0.80 for

various stresses (Fig. A.11). These findings suggest that, in addition to density fluctuations

associated to the minimum of V ∗(h), the change in the shape close to DST may promote

fluctuations over larger scales. Thinking in terms of microstates that the dynamics could

explore, the implications are that the shape of Ṽ ∗(qh) can introduce a preferred pattern in

the force tiles that is characterized by the qh at which Ṽ ∗ has a minimum (qmin
h ). If the

q2
h coefficient is large, then a uniform configuration of contact forces will quickly reach a

steady state characterized by the minimum. However, if the q2
h coefficient approaches zero,

there could be long-lived transients with nearly uniform force distributions that will not

resemble the structures corresponding to qmin
h .

Overall, the analysis performed in this section confirms the idea that the effective poten-

tial obtained with the coarse-graining procedure, albeit radially symmetric, can still cap-

ture some of the complexity of the spatial arrangement of the vertices in force space and

contains important information about the physics of the different flow-states. Moreover,

intriguing similarities with the dynamics of thermal systems suggest a possible path to

sample the microscopic fluctuations of the shear thickening suspension in force space.

A.6 CONCLUSIONS

In this appendix we have sketched a possible path toward a statistical mechanics frame-

work for shear thickening dense suspensions of grains that is based on the force space

representation of the flowing suspension and naturally includes microscopic fluctuations.

The overarching question is the nature of fluctuations and correlations close to DST beyond

the mean field descriptions developed so far. Going beyond time-averaged properties, we
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presented distributions of shear rates measured in microscopic simulations of a numerical

model [84, 126] of suspensions undergoing DST. These distribution featured anomalous

non-Gaussian fluctuations in the DST regime. While these fluctuations are suggestive of

long-ranged microscopic correlations, microscopic measures of clustering of grain posi-

tions do not reveal any changes across the DST transition. However, while the clustering of

particles in real space remained virtually unchanged on transitioning from CST to DST, the

force-tile representation of the suspension, which is based on the network of forces acting

between the grains, provided further insight. In this representation, the pair-wise forces are

edges. The vertices where the edges meet define vectors in this space. The distance between

the vertices quantify the internal stresses in the system. A clustering analysis, similar to the

one applied in real space, revealed qualitative changes in the correlations between these

height vertices as the suspension transitioned from CST to DST.

By implementing a coarse-graining procedure, we were able to filter out the hydrody-

namic drag forces and focus on the contact forces that play the dominant role in DST. From

the pair correlations of these coarse-grained points, we constructed an effective pair poten-

tial. Making an analogy between force vertices and point particles interacting through an

effective potential, we probed the microscopic states accessible in force space in presence

of these interactions and found that the changes detected in the potential shape far away

from, and close to, DST may qualitatively change the type and degree of clustering that

the force tiling can undergo. By analyzing the Fourier transform of the effective potentials,

we detected intriguing differences in the low qh behavior, signaling the possibility of long-

ranged fluctuations. In particular, potentials constructed from force vertices in DST showed

a change consistent with the presence of long-lived transients that are very different from

the steady state—much like the anomalous strain rate fluctuations.

Building on this work, we will extend the MD simulations to explore the dynamical

behavior more systematically. In particular, we need to better understand how the temper-
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ature in the molecular dynamics simulations maps to network rearrangements and fluctu-

ations in the flow of the suspension. The qualitative changes in Ṽ ∗(qh) that accompany

the CST to DST transition suggest that a fruitful avenue for going beyond mean-field

theory is to construct the analog of a Ginzburg-Landau functional with the density in height

space (force-tilings) serving as the order parameter [50]. Standard techniques can then be

applied to compute correlation functions, and investigate singularities indicative of a non-

equilibrium phase transition between the steady states of the suspension.
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of Physical Chemistry B, 102(21):4193–4204, 1998. ISSN 1520-6106. doi: 10.1021/

jp980642x. URL http://pubs.acs.org/doi/abs/10.1021/jp980642x.

[77] Christophe Labbez, Bo Jönsson, Isabelle Pochard, André Nonat, and Bernard

Cabane. Surface charge density and electrokinetic potential of highly charged

149

http://pubs.acs.org/doi/abs/10.1021/jp980642x


minerals: Experiments and Monte Carlo simulations on calcium silicate hydrate.

Journal of Physical Chemistry B, 110(18):9219–9230, 2006. ISSN 15206106. doi:

10.1021/jp057096+.

[78] Samuel Lesko, Eric Lesniewska, André Nonat, Jean Claude Mutin, and Jean Pierre

Goudonnet. Investigation by atomic force microscopy of forces at the origin of

cement cohesion. Ultramicroscopy, 86(1-2):11–21, 2001. ISSN 03043991. doi:

10.1016/S0304-3991(00)00091-7.

[79] Pierre Levitz and D Tchoubar. Disordered porous solids : from chord distributions

to small angle scattering. Journal de Physique I, 2(6):771–790, jun 1992. ISSN

1155-4304. doi: 10.1051/jp1:1992174. URL http://www.edpsciences.org/10.

1051/jp1:1992174.

[80] D. Lootens, P. Hébraud, E. Lécolier, and H. Van Damme. Gelation, shear-thinning

and shear-thickening in cement slurries. Oil and Gas Science and Technology, 59

(1):31–40, 2004. ISSN 12944475. doi: 10.2516/ogst:2004004.

[81] Barbara Lothenbach and Frank Winnefeld. Thermodynamic modelling of the hydra-

tion of Portland cement. Cement and Concrete Research, 36(2):209–226, 2006.

ISSN 00088846. doi: 10.1016/j.cemconres.2005.03.001.

[82] S. Luding. Cohesive, frictional powders: contact models for tension. Granular

Matter, 10:235–246, 2008.

[83] R. Mari, R. Seto, J. F Morris, and M. M. Denn. Shear thickening, frictionless

and frictional rheologies in non-brownian suspensions. Journal of Rheology, 58

(6):1693–1724, 2014.

150

http://www.edpsciences.org/10.1051/jp1:1992174
http://www.edpsciences.org/10.1051/jp1:1992174


[84] Romain Mari, Ryohei Seto, Jeffrey F. Morris, and Morton M. Denn. Shear thick-

ening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol.,

58(6):1693–1724, 2014.

[85] Romain Mari, Ryohei Seto, Jeffrey F. Morris, and Morton M. Denn. Shear thick-

ening, frictionless and frictional rheologies in non-brownian suspensions. Journal

of Rheology, 58(6):1693–1724, 2014. doi: 10.1122/1.4890747. URL https:

//doi.org/10.1122/1.4890747.

[86] Romain Mari, Ryohei Seto, Jeffrey F. Morris, and Morton M. Denn. Nonmonotonic

flow curves of shear thickening suspensions. Phys. Rev. E, 91(5):052302, May 2015.

doi: 10.1103/PhysRevE.91.052302.

[87] Pekka Mark and Lennart Nilsson. Structure and Dynamics of the TIP3P , SPC ,

and SPC / E Water Models at 298 K. The Journal of Physical Chemistry A, 105

(43):9954–9960, 2001. ISSN 1089-5639. doi: 10.1021/jp003020w. URL http:

//pubs.acs.org/doi/abs/10.1021/jp003020w.

[88] C. M. Marques and M. E. Cates. Hexagonal and lamellar mesophases induced

by shear . J. Phys. France, 51:1733–1747, 1990. doi: 10.1051/jphys:

0199000510160173300.

[89] Saeed Masoumi, Hamid Valipour, and Mohammad Javad Abdolhosseini Qomi.

Intermolecular Forces between Nanolayers of Crystalline Calcium-Silicate-Hydrates

in Aqueous Medium. Journal of Physical Chemistry C, 121(10):5565–5572, 2017.

ISSN 19327455. doi: 10.1021/acs.jpcc.6b10735.

[90] Saeed Masoumi, Siavash Zare, Hamid Valipour, and Mohammad Javad Abdolhos-

seini Qomi. Effective Interactions between Calcium-Silicate-Hydrate Nanolayers.

151

https://doi.org/10.1122/1.4890747
https://doi.org/10.1122/1.4890747
http://pubs.acs.org/doi/abs/10.1021/jp003020w
http://pubs.acs.org/doi/abs/10.1021/jp003020w


Journal of Physical Chemistry C, 123(8):4755–4766, 2019. ISSN 19327455. doi:

10.1021/acs.jpcc.8b08146.

[91] J Mewis and Norman Joseph Wagner. Colloidal suspension rheology. Cambridge

series in chemical engineering. Cambridge University Press, Cambridge, 2012.

ISBN 9780521515993. URL http://www.loc.gov/catdir/enhancements/

fy1214/2011029383-t.html.

[92] R. Sh. Mikhail, L. E. Copeland, and Stephen Brunauer. Pore structures and surface

areas of hardened portland cement pastes by Nitrogen adsorption. Can J Chem, 42

(2):426–438, 1964.

[93] Paramita Mondal, Surendra R. Shah, and Laurence D. Marks. Nanoscale charac-

terization of cementitious materials. ACI Materials Journal, 105(2):174–179, 2008.

ISSN 0889325X. doi: 10.1007/978-3-319-17088-6_5.

[94] Joseph Monti, Patricia Marie McGuiggan, and Mark O. Robbins. Effect of roughness

and elasticity on interactions between charged colloidal spheres. Langmuir, 0(ja):

null, 0. doi: 10.1021/acs.langmuir.9b02161. URL https://doi.org/10.1021/

acs.langmuir.9b02161. PMID: 31574219.

[95] André G. Moreira and Roland R. Netz. Binding of similarly charged plates with

counterions only. Physical Review Letters, 87(7):78301–1–78301–4, 2001. ISSN

10797114. doi: 10.1103/PhysRevLett.87.078301.

[96] Christopher Ness and Jin Sun. Shear thickening regimes of dense non-Brownian

suspensions. Soft Matter, 12(3):914–924, 2016.

152

http://www.loc.gov/catdir/enhancements/fy1214/2011029383-t.html
http://www.loc.gov/catdir/enhancements/fy1214/2011029383-t.html
https://doi.org/10.1021/acs.langmuir.9b02161
https://doi.org/10.1021/acs.langmuir.9b02161


[97] André Nonat. The structure and stoichiometry of C-S-H. Cement and Concrete

Research, 34(9):1521–1528, 2004. ISSN 00088846. doi: 10.1016/j.cemconres.2004.

04.035.

[98] John F. Ouyang and Ryan P. A. Bettens. Modelling Water: A Life-

time Enigma. CHIMIA International Journal for Chemistry, 69(3):104–

111, 2015. ISSN 00094293. doi: 10.2533/chimia.2015.104. URL

http://openurl.ingenta.com/content/xref?genre=article{&}issn=

0009-4293{&}volume=69{&}issue=3{&}spage=104.

[99] Ivan Palaia. Charged systems in, out of, and driven to equilibrium : from nanoca-

pacitors to cement. PhD thesis, University Paris-Saclay, 2019.

[100] Sungnam Park, David E Moilanen, and M D Fayer. Water Dynamics-The Effects of

Ions and Nanoconfinement. J. Phys. Chem. B, 112:5279–5290, 2008.

[101] R. J.-M. Pellenq, J. M. Caillol, and A. Delville. Electrostatic Attraction between Two
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